Skip to main content
Log in

Biological and technical study of a partial-SHARON reactor at laboratory scale: effect of hydraulic retention time

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study was on the technical and biological characteristics of a partial-SHARON submerged-filter bioreactor of 3 L. The main focus was the influence of the hydraulic retention time (HRT) on biofilms. For this purpose, we used molecular tools based on the partial 16S rRNA genes. The results showed that the HRT may affect the nitrification processes of a bioreactor using synthetic wastewater containing 600 mg/L of ammonia. It was found that an HRT of 0.5 day transformed 100 % of the ammonium into nitrite. However, when the HRT was decreased to 0.4 day, there was a significant reduction (35 %) in the quantity of ammonia transformed, which confirmed the complexity of the system operation. Moreover, a PCR-TGGE approach highlighted the differences observed. The results obtained showed that an HRT of 0.5 day reduced bacterial biodiversity in the biofilms, which were mainly formed by Nitrosomonas and Diaphorobacter. In contrast, an HRT of 0.4 day facilitated the formation of heterogeneous biofilms formed by nitrifying bacteria, such as Nitrosomonas sp., Nitrosospira sp., and Nitrosovibrio sp.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Metcalf & Eddy (2003) Wastewater engineering, treatment and reuse, 4th edn. McGraw-Hill, New York

    Google Scholar 

  2. Mosquera-Corral A, González F, Campos JL, Méndez R (2005) Partial nitrification in a Sharon reactor in the presence of salts and organic carbon compounds. Process Biochem 40:3109–3118

    Article  CAS  Google Scholar 

  3. Mulder MW, Van Loosdrecht MCM, Hellinga C, Kempen R (2001) Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering. Water Sci Technol 43(11):127–134

    CAS  Google Scholar 

  4. Calderón K, Rodelas B, Cabirol N, González-López J, Noyola A (2011) Analysis of microbial communities developed on the fouling layers of a membrane-coupled anaerobic bioreactor applied to wastewater treatment. Bioresour Technol 102(7):4618–4627

    Article  Google Scholar 

  5. Gómez-Silván C, Molina-Muñoz M, Poyatos JM, Ramos A, Hontoria E, Rodelas B, González-López J (2010) Structure of archaeal communities in membrane-bioreactor and submerged-biofilter wastewater treatment plants. Bioresour Technol 101:2096–2105

    Article  Google Scholar 

  6. Hellinga C, Schellen AAJC, Mulder JW, Van Loosdrecht MCM, Heijnen JJ (1998) The SHARON-process: an innovative method for nitrogen removal from ammonium rich wastewater. Water Sci Technol 37(1):135–142

    Article  CAS  Google Scholar 

  7. Jetten MSM, Schmid MA, Schmidt I, Wubben M, van Dongen L, Abma W, Sliekers OA, Revsbech NP, Beaumont B, Ottosen LM, Volcke E, Laanbroek HJ, Campos-Gomez JL, Cole JA, van Loosdrecht MCM, Mulder JW, Fuerst JA, Richardson D, van de Pas KT, Mendez-Pampin R, Third KM, Cirpus IY, van Spanning RJM, Nielsen LP, Op den Camp HJM, Schultz C, Gundersen JK, Vanrolleghem P, Strous M, Wagner M, Kuenen JG (2002) Implementation of EU guidelines for nitrogen removal by improved control and application of new nitrogen-cycle bacteria. Rev Environ Sci Biotechnol 1:51–63

    Article  CAS  Google Scholar 

  8. Van Dongen U, Jetten MSM, Van Loosdrecht MCM (2001) The SHARON-ANAMMOX process for treatment of ammonium rich wastewater. Water Sci Technol 44(1):153–160

    Google Scholar 

  9. Molina-Muñoz M, Poyatos JM, Sánchez-Peinado MM, Hontoria E, González-López J, Rodelas B (2009) Microbial community structure and dynamics in a pilot-scale submerged membrane bioreactor aerobically treating domestic wastewater under real operation conditions. Sci Total Environ 407:3994–4003

    Article  Google Scholar 

  10. Gómez-Villalba B, Calvo C, Vilchez R, González-López J, Rodelas B (2006) TGGE analysis of the diversity of ammonia-oxidizing and denitrifying bacteria in submerged filter biofilms for the treatment of urban wastewater. Appl Microbiol Biotechnol 72(2):393–400

    Article  Google Scholar 

  11. Liang Z, Liu J (2007) Control factors of partial nitritation for landfill leachate treatment. J Environ Sci 19:523–529

    Article  CAS  Google Scholar 

  12. Vilar A, Eiroa M, Kennes C, Veiga MC (2010) The SHARON process in the treatment of landfill leachate. Water Sci Technol 61(1):47–52

    Article  CAS  Google Scholar 

  13. Gonzalez-Martinez A, Poyatos JM, Hontoria E, Gonzalez-Lopez J, Osorio F (2011) Treatment of effluents polluted by nitrogen with new biological technologies based on autotrophic nitrification-denitrification processes. Recent Pat Biotechnol 5(2):74–84

    Article  CAS  Google Scholar 

  14. Van Hulle SWH, Van Den Broeck S, Maertens J, Villez K, Donckels BMR, Schelstraete G, Volcke EIP, Vanrolleghem PA (2005) Construction start-up and operation of a continuously aerated laboratory-scale SHARON reactor in view of coupling with an Anammox reactor. Water SA 31(3):327–334

    Google Scholar 

  15. Peng Y, Zhu G (2006) Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Appl Microbiol Biotechnol 73:15–26

    Article  CAS  Google Scholar 

  16. Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints, practical tools for microbial ecology. Environ Microbiol 10:1571–1581

    Article  CAS  Google Scholar 

  17. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  18. Van Loosdrecht MCM (2004) Recent development on biological wastewater nitrogen removal technologies. In: Proceedings of the international conference on wastewater treatment for nutrient removal and reuse (ICWNR’04). Pathumthani, Thailand, January 26–29

  19. Jetten MSM, Horn SJ, Van Loosdrecht MCM (1997) Towards a more sustainable municipal wastewater treatment system. Water Sci Technol 35:171–180

    CAS  Google Scholar 

  20. Khan ST, Hiraishi A (2002) Diaphorobacter nitroreducens gen nov, sp nov, a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge. J Gen Appl Microbiol 48(6):299–308

    Article  CAS  Google Scholar 

  21. Anshuman A, Khardenavis AK, Hemant JP (2007) Simultaneous nitrification and denitrification by diverse Diaphorobacter sp. Appl Microb Cell Physiol 77(2):403–409

    Google Scholar 

  22. Poth M, Focht DD (1985) 15N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification. Appl Environ Microbiol 49:1134–1141

    CAS  Google Scholar 

  23. Schmidt I, Bock E (1997) Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch Microbiol 167:106–111

    Article  CAS  Google Scholar 

  24. Hiroaki U, Hiroshi S (1996) Nitrogen removal by tubular gel containing Nitrosomonas europaea and Paracoccus denitrificans. Appl Environ Microbiol 62(11):4224–4228

    Google Scholar 

  25. Huang JS, Wu CS, Jih CG, Chen CT (2001) Effect of addition of Rhodobacter sp. to activated-sludge reactors treating piggery wastewater. Water Res 35(16):3867–3875

    Article  CAS  Google Scholar 

  26. Liu Y, Xu C-J, Jiang J-T, Liu Y-H, Song X-F, Li H, Liu Z-P (2004) Catellibacterium aquatile sp. nov., isolated from fresh water, and emended description of the genus Catellibacterium Tanaka et al. 2004. Int J Syst Evol Microbiol 60:2027–2031

    Article  Google Scholar 

  27. Xiaoyan Y, XIaochang C, Yonghun W, Liu J (2011) Study of the variation of ecotoxicity at different stages of domestic wastewater treatment using Vibrio qinghaiensis sp.-Q67. Appl Environ Microbiol 190:1–3

    Google Scholar 

  28. Logemann S, Schantl J, Bijvank S, van Loosdrecht M, Kuenen J, Jetten M (1998) Molecular microbial diversity in a nitrifying reactor system without sludge retention. FEMS Microbiol Ecol 27:239–249

    Article  CAS  Google Scholar 

  29. Stehr G, Boettcher B, Dittberner P, Rath G, Koops HP (1995) The ammonia-oxidizing nitrifying population of the River Elbe estuary. FEMS Microbiol Ecol 17:177–186

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Department of Innovation, Science and Enterprise of the Regional Government of Andalusia, Spain (P09-RNM-5412). We would also like to thank the MITA group, the Instituto de Parasitología y Biología Molecular López Neyra (CSIC, Granada, Spain) and the Centro de Instrumentación Científica (CIC, Granada, Spain) for their valuable cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Osorio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Martínez, A., Calderón, K., Albuquerque, A. et al. Biological and technical study of a partial-SHARON reactor at laboratory scale: effect of hydraulic retention time. Bioprocess Biosyst Eng 36, 173–184 (2013). https://doi.org/10.1007/s00449-012-0772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0772-7

Keywords

Navigation