Skip to main content
Log in

Co-production of tannase and pectinase by free and immobilized cells of the yeast Rhodotorula glutinis MP-10 isolated from tannin-rich persimmon (Diospyros kaki L.) fruits

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Hyper tannase and pectinase-producing yeast Rhodotorula glutinis MP-10 was isolated from persimmon (Diospyros kaki L.) fruits. The main pectinase activity of yeast was exo-polygalacturonase. No pectin methyl esterase and too low pectin lyase activities were detected for this yeast. The maximum exo-activities of tannase and polygalacturonase were determined as 15.2 and 26.9 U/mL for free cells and 19.8 and 28.6 U/mL for immobilized cells, respectively. Immobilized cells could be reused in 13 successive reaction cycles without any loss in the maximum tannase and polygalacturonase activities. Besides, too little decreases in activities of these enzymes were recorded between 14 and 18 cycles. At the end of 18 successive reaction cycles, total 503.1 U/mL of polygalacturonase and 349.6 U/mL of tannase could be produced using the same immobilized cells. This is the first report on the use of free and/or immobilized cells of a microorganism for the co-production of tannase and pectinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Battestin V, Macedo GA (2007) Tannase production by Paecilomyces variotii. Bioresour Technol 98:1832–1837

    Article  CAS  Google Scholar 

  2. Kumar R, Sharma J, Singh R (2007) Production of tannase from Aspergillus ruber under solid-state fermentation using jamun (Syzygium cumini) leaves. Microb Res 162:384–390

    Article  CAS  Google Scholar 

  3. Costa AM, Ribeiro WX, Kato E, Monteiro ARG, Peralta RM (2008) Production of tannase by Aspergillus tamarii in submerged cultures. Braz Arch Biol Technol 51:399–404

    Article  CAS  Google Scholar 

  4. Zeni J, Cence K, Grando CE, Tiggermann L, Colet R, Lerin LA et al (2011) Screening of pectinase-producing microorganisms with polygalacturonase activity. Appl Biochem Biotechnol 163:383–392

    Article  CAS  Google Scholar 

  5. Saad N, Briand M, Gardarin C, Briand Y, Michaud Ph (2007) Production, purification and characterization of an endopolygalacturonase from Mucor rouxii NRRL 1894. Enzym Microb Technol 41:800–805

    Article  CAS  Google Scholar 

  6. Padma PN, Anuradha K, Reddy G (2011) Pectinolytic yeast isolates for cold-active polygalacturonase production. Innov Food Sci Emerg Technol 12:178–181

    Article  Google Scholar 

  7. Yuan P, Meng K, Huang H, Shi P, Luo H, Yang P, Yao B (2011) A novel acidic and low-temperature-active endopolygalacturonase from Penicillium sp. CGMCC 1669 with potential for application in apple juice clarification. Food Chem 129:1369–1375

    Article  CAS  Google Scholar 

  8. Jia JH, Wheals A (2000) Endopolygalacturonase genes and enzymes from Saccharomyces cerevisiae and Kluyveromyces marxianus. Curr Genet 38:264–270

    Article  CAS  Google Scholar 

  9. Blanco P, Sieiro C, Villa TG (1999) Production of pectic enzymes in yeasts. FEMS Microbiol Lett 175:1–9

    Article  CAS  Google Scholar 

  10. Silva EG, Borges MF, Medina C, Piccoli RH, Schwan RF (2005) Pectinolytic enzymes secreted by yeasts from tropical fruits. FEMS Yeast Res 5:859–865

    Article  Google Scholar 

  11. Cutillas-Iturralde A, Zarra I, Lorences EP (1993) Metabolism of cell wall polysaccharides from persimmon fruit. Pectin solubilization during fruit ripening occurs in apparent absence of polygalacturonase activity. Physiol Plantarum 89:369–375

    Article  CAS  Google Scholar 

  12. Ozen A, Colak A, Dincer B, Guner S (2004) A diphenolase from persimmon fruits (Diospyros kaki L., Ebenaceae). Food Chem 85:431–437

    Article  CAS  Google Scholar 

  13. Bubba MD, Giordani E, Pippucci L, Cincinelli A, Checchini L, Galvan P (2009) Changes in tannins, ascorbic acid and sugar content in astringent persimmons during on-tree growth and ripening and in response to different postharvest treatments. J Food Compos Anal 22:668–677

    Article  Google Scholar 

  14. Silva D, Tokuioshi K, Martins ES, Silva R, Gomes E (2005) Production of pectinase by solid-state fermentation with Penicillium viridicatum RFC3. Process Biochem 40:2885–2889

    Article  CAS  Google Scholar 

  15. Patil SR, Dayanand A (2006) Production of pectinase from deseeded sunflower head by Aspergillus niger in submerged and solid-state conditions. Bioresour Technol 97:2054–2058

    Article  CAS  Google Scholar 

  16. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  17. Jia JY, Feng BZ, Sun WX, Zhang XG (2009) Polygalacturonase, pectate lyase and pectin methylesterase activity in pathogenic strains of Phytophthora capsici incubated under different conditions. J Phytopathol 157:585–591

    Article  CAS  Google Scholar 

  18. Albersheim P (1966) Pectin lyase from fungi. Methods Enzymol 8:628–631

    Article  CAS  Google Scholar 

  19. Kertesz ZI (1955) Pectic enzymes. Methods Enzymol 1:159–162

    Google Scholar 

  20. Mondal KC, Banerjee D, Jana M, Pati BR (2001) Colorimetric assay for determination of tannin acyl hydrolase (E.C. 3.1.1.20) activity. Anal Biochem 295:168–171

    Article  CAS  Google Scholar 

  21. Taskin M, Erdal S (2011) Production of carotenoids by Rhodotorula glutinis MT-5 in submerged fermentation using the extract from waste loquat kernels as substrate. J Sci Food Agric 91:1440–1445

    Article  CAS  Google Scholar 

  22. Manachini PL, Parini C, Fortina MG (1988) Pectic enzymes from Aureobasidium pullulans LV 10. Enzym Microb Technol 10:682–685

    Article  CAS  Google Scholar 

  23. Mondal KC, Banerjee R, Pati BR (2000) Tannase production by Bacillus licheniformis. Biotechnol Lett 0:767–769

    Article  CAS  Google Scholar 

  24. Banerjee D, Mondal KC, Pati BR (2001) Production and characterization of extracellular and intracellular tannase from newly isolated Aspergillus aculeatus DBF 9. J Basic Microbiol 41:313–318

    Article  CAS  Google Scholar 

  25. Batra A, Saxena RK (2005) Potential tannase producers from the genera Aspergillus and Penicillium. Process Biochem 40:1553–1557

    Article  CAS  Google Scholar 

  26. Darah I, Sumathi G, Jain K, Lim SH (2011) Tannase enzyme production by entrapped cells of Aspergillus niger FETL FT3 in submerged culture system. Bioprocess Biosyst Eng 34:795–801

    Article  CAS  Google Scholar 

  27. Böer E, Breuer SF, Weniger M, Denter S, Piontek M, Kunze G (2011) Large-scale production of tannase using the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 92:105–114

    Article  Google Scholar 

  28. Freitas PM, Martin N, Silva D, Silva R, Gomes E (2006) Production and partial characterization of polygalacturonases produced by thermophilic Monascus sp N8 and by thermotolerant Aspergillus sp N12 on solid-state fermentation. Braz J Microbiol 37:302–306

    Article  Google Scholar 

  29. Gattas EAL, Bueno MR, Ribeiro MHL (2009) Stimulation of polygalacturonase production in an immobilized system by Aspergillus sp.: effect of pectin and glucose. Eur Food Res Technol 229:923–928

    Article  CAS  Google Scholar 

  30. Ahmed SA (2008) Invertase Production by Bacillus macerans immobilized on calcium alginate beads. J Appl Sci Res 4:1777–1781

    CAS  Google Scholar 

  31. Razmovski R, Vucurovic V (2011) Ethanol production from sugar beet molasses by S. cerevisiae entrapped in an alginate–maize stem ground tissue matrix. Enzym Microb Technol 48:378–385

    Article  CAS  Google Scholar 

  32. De souza DF, Tychanowicz GK, de Souza CG, Peralta RM (2006) Co-production of ligninolytic enzymes by Pleurotus pulmonarius on wheat bran solid state cultures. J Basic Microbiol 46:126–134

    Google Scholar 

  33. Konsoula Z, Liakopoulou-Kyriakides M (2007) Co-production of α-amylase and β-galactosidase by Bacillus subtilis in complex organic substrates. Bioresour Technol 98:50–157

    Article  Google Scholar 

  34. Hmidet N, Ali NEH, Haddar A, Kanoun S, Alya SK, Nasri M (2009) Alkaline proteases and thermostable α-amylase co-produced by Bacillus licheniformis NH1. Characterization and potential application as detergent additive. Biochem Eng J 47:71–79

    Article  CAS  Google Scholar 

  35. Kumar S, Sharma HK, Sarkar BC (2011) Effect of substrate and fermentation conditions on pectinase and cellulase production by Aspergillus niger NCIM 548 in submerged (SmF) and solid state fermentation (SSF). Food Sci Biotechnol 20:1289–1298

    Article  CAS  Google Scholar 

  36. Almeida C, Brányik T, Moradas-Ferreira P, Teixeira J (2003) Continuous production of pectinase by immobilized yeast cells on spent grains. J Biosci Bioeng 96:513–518

    Article  CAS  Google Scholar 

  37. Kuhad RC, Kapoor M, Rustagi R (2004) Enhanced production of an alkaline pectinase from Streptomyces sp. RCK-SC by whole-cell immobilization and solid-state cultivation. World J Microb Biotechnol 20:257–263

    Article  CAS  Google Scholar 

  38. Ahlawat S, Battan B, Dhiman SS, Sharma J, Mandhan RP (2007) Production of thermostable pectinase and xylanase for their potential application in bleaching of kraft pulp. J Ind Microbiol Biotechnol 34:763–770

    Article  CAS  Google Scholar 

  39. Belmaresa R, Contreras-Esquivela JC, Rodriguez-Herreraa R, Coronelb AR, Aguilar CN (2004) Microbial production of tannase: an enzyme with potential use in food industry. LWT Food Sci Technol 37:857–864

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesut Taskin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taskin, M. Co-production of tannase and pectinase by free and immobilized cells of the yeast Rhodotorula glutinis MP-10 isolated from tannin-rich persimmon (Diospyros kaki L.) fruits. Bioprocess Biosyst Eng 36, 165–172 (2013). https://doi.org/10.1007/s00449-012-0771-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0771-8

Keywords

Navigation