Skip to main content
Log in

Process optimization of xylanase production using cheap solid substrate by Trichoderma reesei SAF3 and study on the alteration of behavioral properties of enzyme obtained from SSF and SmF

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study aimed to assess the variability in respect of titer and properties of xylanase from Trichoderma reesei SAF3 under both solid-state and submerged fermentation. SSF was initially optimized with different agro-residues and among them wheat bran was found to be the best substrate that favored maximum xylanase production of 219 U (gws)−1 at 96 h of incubation. The mycelial stage of the fungi and intracellular accumulation of Ca++ and Mg++ induced maximum enzyme synthesis. Inoculum level of 10 × 106 spores 5 g−1 of dry solid substrate and water activity of 0.6 were found to be optimum for xylanase production under SSF. Further optimization was made using a Box-Behnken design under response surface methodology. The optimal cultivation conditions predicted from canonical analysis of this model were incubation time (A) = 96–99 h, inoculum concentration (B) = 10 × 106 spores 5 g−1 of dry substrate, solid substrate concentration (C) = 10–12 g flask−1, initial moisture level (D) = 10 mL flask−1 (equivalent to a w  = 0.55) and the level of xylanase was 299.7 U (gws)−1. Subsequent verification of these levels agreed (97 % similar) with model predictions. Maximum amount of xylanase was recovered with water (6:1, v/w) and under shaking condition (125 rpm). Purified xylanase from SSF showed better stability in salt and pH, was catalytically and thermodynamically more efficient over enzyme from SmF, though molecular weight of both enzymes was identical (53.8 kDa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I. Bioprocesses and products. Proc Biochem 35:1153–1169

    Article  CAS  Google Scholar 

  2. Someet N, Virendra S (2001) Optimization of xylanase production by Melanocarpus albomyces IIS 68 in solid-state fermentation using response surface methodology. J Biosci Bioeng 91:425–427

    Google Scholar 

  3. Holker U, Hofer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186

    Article  CAS  Google Scholar 

  4. Viniegra-González G, Favela-Torres E, Aguilar CN, Rómero-Gomez SJ, D′ıaz-God′ınez G, Augur C (2003) Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem Eng J 13:157–167

    Article  Google Scholar 

  5. Lekha P, Lonsane B (1994) Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL 104 in solid-state, liquid surface and submerged fermentations. Proc Biochem 29:497–503

    Article  CAS  Google Scholar 

  6. Acuna-Arguelles ME, Gutierrez-Rojas M, Viniegra-González G, Favela-Torres E (1995) Production and properties of three pectinolytic activities produced by Aspergillus niger in submerged and solid-state fermentation. Appl Microbiol Biotechnol 43:808–814

    Article  CAS  Google Scholar 

  7. Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid state fermentation for the production of industrial enzyme. Curr Sci 77:149–162

    CAS  Google Scholar 

  8. Krishna C (2005) Solid-state fermentation systems—an overview. Crit Rev Biotechnol 25:1–30

    Article  CAS  Google Scholar 

  9. Manimaran A, Kumar KS, Permaul K, Singh S (2009) Hyper production of cellulase-free xylanase by Thermomyces lanuginosus SSBP on bagasse pulp and its application in biobleaching. Appl Microbiol Biotechnol 81:887–893

    Article  CAS  Google Scholar 

  10. Li K, Azadi P, Collins R, Tolan J, Kim JS, Eriksson KEL (2000) Relationship between activities of xylanases and xylan structure. Enzym Microbiol Technol 193:265–275

    Google Scholar 

  11. Nagar S, Gupta VK, Kumar D, Kumar L, Kuhad RC (2010) Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. J Indust Microbiol Biotechnol 37:71–83

    Article  CAS  Google Scholar 

  12. Miller GL (1959) Developed DNS based method for reducing sugar estimation. Anal Chem 31:246–248

    Google Scholar 

  13. Rashid MH, Siddiqui KS (1998) Thermodynamic and kinetic study of stability of the native and chemically modified β-glucosidase from Aspergillus niger. Proc Biochem 33:109–115

    Article  CAS  Google Scholar 

  14. Gawande PV, Kamat MY (1999) Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application. J Appl Microbiol 87:511–519

    Article  CAS  Google Scholar 

  15. Okafor UA, Okochi VI, Onyegeme-okerenta BM, Nwodo-Chinedu S (2007) Xylanase production by Aspergillus niger ANL 301 using agro-wastes. Afr J Biotechnol 6:1710–1714

    CAS  Google Scholar 

  16. Mandal A, Kar S, Das Mohapatra PK, Maity C, Pati BR, Mondal KC (2012) Regulation of xylanase biosynthesis in Bacillus cereus BSA1. Appl Biochem Biotechnol. doi:10.1007/s12010-011-9523-5

    Google Scholar 

  17. Sun X, Liu Z, Qu Y, Li X (2008) The Effects of wheat bran composition on the production of biomass-hydrolyzing enzymes by Penicillium decumbens. Appl Biochem Biotechnol 146:119–128

    Article  CAS  Google Scholar 

  18. Colina A, Sulbaran DFB, Aiello C, Ferrer A (2003) Xylanase production by Trichoderma reesei rut C-30 on rice straw. Appl Biochem Biotechnol 108:715–724

    Article  Google Scholar 

  19. Kar S, Mandal A, Das Mohapatra PK, Mondal KC, Pati BR (2006) Production of cellulase- free xylanase by Trichoderma reesei SAF3. Br J Microbiol 37:462–464

    Article  CAS  Google Scholar 

  20. Kar S, Mandal A, Das Mohapatra PK, Samanta S, Pati BR, Mondal KC (2008) Production of xylanase by immobilized Trichoderma reesei SAF3 in Ca-alginate beads. J Ind Microbiol Biotechnol 35:245–249

    Article  CAS  Google Scholar 

  21. Park YK, Rivera BC (1982) Alcohol production from various enzyme converted starches with or without cooking. Biotechnol Bioeng 27:259–273

    Google Scholar 

  22. Kamra P, Satyanarayan T (2004) Xylanase production by the thermophilic mold Humicola lanuginosa in solid-state fermentation. Appl Biochem Biotechnol 119:145–158

    Article  CAS  Google Scholar 

  23. Xiong H, Von WN, Turunen O, Leisola M, Pastinen O (2005) Xylanase production by Trichoderma reesei Rut C-30 grown on l-arabinose-rich plant hydrolysates. Biores Technol 96:753–759

    Article  CAS  Google Scholar 

  24. Isil S, Nilufer A (2005) Investigation of factors affecting xylanase activity from Trichoderma harzianum 1073 D3. Br Arch Biol Technol 48:187–193

    CAS  Google Scholar 

  25. Raimbault M, Alazad D (1980) Culture method to study fungal growth in solid fermentation. Eur J Appl Microbiol Biotechnol 9:199–209

    Article  CAS  Google Scholar 

  26. Pandey A (1992) Recent process development in solid-state fermentation. Proc Biochem 27:109–117

    Article  CAS  Google Scholar 

  27. Lu W, Li D, Wu Y (2003) Influence of water activity and temperature on xylanase biosynthesis in pilot-scale solid-state fermentation by Aspergillus sulphureus. Enzym Microbiol Technol 32:305–311

    Article  CAS  Google Scholar 

  28. Mahalaxmi Y, Sathish T, Rao CS, Prakasham RS (2010) Corn husk as a novel substrate for the production of rifamycin B by isolated Amycolatopsis sp. RSP 3 under SSF. Proc Biochem 45:47–53

    Article  CAS  Google Scholar 

  29. Nutan D, Ulka SP, Kulbhusan BB, Jayant MK, Digamber VG (2002) Production of acidic lipase by Aspergillus niger in solid-state fermentation. Proc Biochem 38:715–721

    Article  Google Scholar 

  30. Batan B, Sharma J, Kuhud R (2006) High level xylanase production by alkalophilic Bacillus pumilus ASH under solid-state fermentation. World J Microbiol Biotechnol 22:1281–1287

    Article  Google Scholar 

  31. Madeira JV Jr, Macedo JA, Macedo GA (2012) A new process for simultaneous production of tannase and phytase by Paecilomyces variotii in solid-state fermentation of orange pomace. Bioprocess Biosyst Eng 35:477–482

    Article  CAS  Google Scholar 

  32. Maity C, Ghosh K, Halder SK, Jana A, Adak A, Das Mohapatra PK, Pati BR, Mondal KC (2012) Xylanase isozymes from the newly isolated Bacillus sp. CKBx1D and optimization of its deinking potentiality. Appl Biochem Biotechnol. doi:10.1007/s12010-012-9556-4

  33. Mandal A, Kar S, Das Mohapatra PK, Maity C, Pati BR, Mondal KC (2011) Purification and characterization of an endoxylanase from the culture broth of Bacillus cereus BSA11. Appl Biochem Microbiol 47:250–255

    Article  CAS  Google Scholar 

  34. Jana M, Pati B (1997) Thermostable, salt-tolerant α-amylase from Bacillus sp. MD 124. J Basic Microbiol 37:323–326

    Article  CAS  Google Scholar 

  35. Siddiqui KS, Rashid MH, Rajoka MI (1997) Kinetic analysis of the active-site of an intracellular β-glucosidase from Cellulomonas biazotea. Folia Microbiol 42:53–58

    Article  CAS  Google Scholar 

  36. Rajoka MI, Akhtar MW, Hanif A, Khalid AM (2006) Production and characterization of a highly active cellobiase from Aspergillus niger grown in solid state fermentation. World J Microbiol Biotechnol 22:991–998

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are greatly indebted to the University Grants Commission, New Delhi (F.PSW-060/70-08) and CSIR, New Delhi [38 (1234)/09/EMR-II] for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keshab C. Mondal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kar, S., Sona Gauri, S., Das, A. et al. Process optimization of xylanase production using cheap solid substrate by Trichoderma reesei SAF3 and study on the alteration of behavioral properties of enzyme obtained from SSF and SmF. Bioprocess Biosyst Eng 36, 57–68 (2013). https://doi.org/10.1007/s00449-012-0761-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0761-x

Keywords

Navigation