Skip to main content
Log in

Influence of gaseous VOC concentration on the diversity and biodegradation performance of microbial communities

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this work, the influence of toluene gas concentration on the isolation of toluene degrading microbial communities from activated sludge was studied. Toluene biodegradation at gas phase concentration of 10 g m−3 (R1) resulted in process instability with removal efficiencies (RE) lesser than 33 %, while operation at toluene gas phase concentrations of 300 mg m−3 (R2) and 11 mg m−3 (R3) was stable with RE ranging from 74 to 94 %. The consortium isolated in R1 exhibited the highest tolerance toward toluene but the lowest biodegradation performance at trace level VOC concentrations. Despite R2 and R3 showed a similar sensitivity toward toluene toxicity, the microbial community from R2 supported the most efficient toluene biodegradation at trace level VOC concentrations. The Shannon-Wiener index showed an initial biodiversity decrease from 3.2 to 2.0, 1.9 and 2.7 in R1, R2 and R3, respectively. However, while R2 and R3 were able to recover their initial diversity levels by day 48, this loss in diversity was permanent in R1. These results showed that traditional inoculum isolation/acclimation techniques based on the exposure of the inoculum to high VOC concentrations, where toxicity tolerance plays a key role, may result in a poor abatement performance when the off-gas stream is diluted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sucker K, Both R, Winneke G (2008) Review of adverse health effects of odours in field studies. In: 3rd IWA International Conference on Odour and VOCs, Barcelona, Spain

  2. Estrada JM, Kraakman NJRB, Rl Muñoz, Lebrero R (2011) A comparative analysis of odour treatment technologies in wastewater treatment plants. Environ Sci Technol 45(3):1100–1106. doi:10.1021/es103478j

    Article  CAS  Google Scholar 

  3. Lebrero R, Rodríguez E, Martin M, García-Encina PA, Muñoz R (2010) H2S and VOCs abatement robustness in biofilters and air diffusion bioreactors: a comparative study. Water Res 44(13):3905–3914

    Article  CAS  Google Scholar 

  4. Hori K, Yamashita S, Ishii S, Kitagawa M, Tanji Y, Unno H (2001) Isolation, characterization and application to off-gas treatment of toluene-degrading bacteria. J Chem Eng Jpn 34(9):1120–1126. doi:10.1252/jcej.34.1120

    Article  CAS  Google Scholar 

  5. Mathur AK, Majumder CB, Chatterjee S (2007) Combined removal of BTEX in air stream by using mixture of sugar cane bagasse, compost and GAC as biofilter media. J Hazard Mater 148(1–2):64–74

    Article  CAS  Google Scholar 

  6. Andres Y, Dumont E, Gerente C (2009) Characterization techniques of packing material colonization in gas biofiltration processes. Can J Civ Eng 36(12):1895–1902. doi:10.1139/L09-143 (This article is one of a selection of papers published in this Special Issue on Biological Air Treatment)

    Article  CAS  Google Scholar 

  7. Jin Y, Guo L, Veiga MC, Kennes C (2007) Fungal biofiltration of α-pinene: effects of temperature, relative humidity, and transient loads. Biotechnol Bioeng 96(3):433–443. doi:10.1002/bit.21123

    Article  CAS  Google Scholar 

  8. Muñoz R, Díaz L, Bordel S, Villaverde S (2008) Response of Pseudomonas putida F1 cultures to fluctuating toluene loads and operational failures in suspended growth bioreactors. Biodegradation 19(6):897–908. doi:10.1007/s10532-008-9191-5

    Article  Google Scholar 

  9. Lin J-H, Chou M-S (2005) Henry’s law constant of volatile organic compounds in activated sludge and wastewater at 298 K. In: Proceedings of the International Congress Biotechniques for Air Pollution Control. A Coruña, Spain, October 5–7, 2005

  10. Bordel S, Muñoz R, Díaz L, Villaverde S (2007) New insights on toluene biodegradation by Pseudomonas putida F1: influence of pollutant concentration and excreted metabolites. Appl Microbiol Biotechnol 74(4):857–866. doi:10.1007/s00253-006-0724-8

    Article  CAS  Google Scholar 

  11. Häne BG, Jäger K, Drexler HG (1993) The Pearson product-moment correlation coefficient is better suited for identification of DNA fingerprint profiles than band matching algorithms. Electrophoresis 14(1):967–972. doi:10.1002/elps.11501401154

    Article  Google Scholar 

  12. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian Classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. doi:10.1128/aem.00062-07

    Article  CAS  Google Scholar 

  13. McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32(Web Server issue):W20–W25

    Article  CAS  Google Scholar 

  14. Heipieper HJ, Keweloh H, Rehm HJ (1991) Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl Environ Microbiol 57(4):1213–1217

    CAS  Google Scholar 

  15. Díaz L, Muñoz R, Bordel S, Villaverde S (2008) Toluene biodegradation by Pseudomonas putida F1: targeting culture stability in long-term operation. Biodegradation 19(2):197–208. doi:10.1007/s10532-007-9126-6

    Article  Google Scholar 

  16. Muñoz R, Villaverde S, Guieysse B, Revah S (2007) Two-phase partitioning bioreactors for treatment of volatile organic compounds. Biotechnol Adv 25(4):410–422

    Article  Google Scholar 

  17. Mirpuri R, Jones W, Bryers JD (1997) Toluene degradation kinetics for planktonic and biofilm-grown cells of Pseudomonas putida 54G. Biotechnol Bioeng 53(6):535–546

    Article  CAS  Google Scholar 

  18. Yu H, Kim B, Rittmann B (2001) The roles of intermediates in biodegradation of benzene, toluene, and p-xylene by Pseudomonas putida F1. Biodegradation 12(6):455–463. doi:10.1023/a:1015008627732

    Article  CAS  Google Scholar 

  19. Bordel S, Muñoz R, Díaz LF, Villaverde S (2008) Mechanistic model for evaluating the performance of suspended growth bioreactors for the off-gas treatment of VOCs. Biochem Eng J 38(3):395–405

    Article  CAS  Google Scholar 

  20. Harding RC, Hill GA, Lin Y-H (2003) Bioremediation of toluene-contaminated air using an external loop airlift bioreactor. J Chem Technol Biotechnol 78:406–411

    Article  CAS  Google Scholar 

  21. Martinez A, Rathibandla S, Jones K, Cabezas J (2008) Biofiltration of wastewater lift station emissions: evaluation of VOC removal in the presence of H2S. Clean Technol Environ Policy 10(1):81–87

    Article  CAS  Google Scholar 

  22. Martinez-Lavanchy PM, Muller C, Nijenhuis I, Kappelmeyer U, Buffing M, McPherson K, Heipieper HJ (2010) High stability and fast recovery of expression of the TOL plasmid-carried toluene catabolism genes of Pseudomonas putida mt-2 under conditions of oxygen limitation and oscillation. Appl Environ Microbiol 76(20):6715–6723

    Article  CAS  Google Scholar 

  23. Subba-Rao RV, Rubin HE, Alexander M (1982) Kinetics and extent of mineralization of organic chemicals at trace levels in freshwater and sewage. Appl Environ Microbiol 43(5):1139–1150

    CAS  Google Scholar 

  24. van Groenestijn JW, Liu JX (2002) Removal of alpha-pinene from gases using biofilters containing fungi. Atmos Environ 36(35):5501–5508

    Article  Google Scholar 

  25. Ramos JL, Duque E, Gallegos M-T, Godoy P, Ramos-González MI, Rojas A, Terán W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56(1):743–768. doi:10.1146/annurev.micro.56.012302.161038

    Article  CAS  Google Scholar 

  26. Mathur AK, Majumder CB (2010) Kinetics modelling of the biodegradation of benzene, toluene and phenol as single substrate and mixed substrate by using Pseudomonas putida. Chem Biochem Eng Q 14(1):101–109

    Google Scholar 

  27. Roch F, Alexander M (1997) Inability of bacteria to degrade low concentrations of toluene in water. Environ Toxicol Chem 16(7):1377–1383. doi:10.1002/etc.5620160707

    Article  CAS  Google Scholar 

  28. Stephen JR, Chang Y-J, Gan YD, Peacock A, Pfiffner SM, Barcelona MJ, White DC, Macnaughton SJ (1999) Microbial characterization of a JP-4 fuel-contaminated site using a combined lipid biomarker/polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE)-based approach. Environ Microbiol 1(3):231–241. doi:10.1046/j.1462-2920.1999.00030.x

    Article  CAS  Google Scholar 

  29. Bayle S, Malhautier L, Degrange V, Godon JJ, Fanlo JL (2009) Structural and functional responses of sewage microbial communities used for the treatment of a complex mixture of volatile organic compounds (VOCs). J Appl Microbiol 107(1):85–96. doi:10.1111/j.1365-2672.2009.04190.x

    Article  CAS  Google Scholar 

  30. Lebrero R, Rodriguez E, Garcia-Encina PA, Munoz R (2011) A comparative assessment of biofiltration and activated sludge diffusion for odour abatement. J Hazard Mater 190(1–3):622–630

    Article  CAS  Google Scholar 

  31. Silva CD, Gómez J, Houbron E, Cuervo-López FM, Texier AC (2009) p-Cresol biotransformation by a nitrifying consortium. Chemosphere 75(10):1387–1391

    Article  CAS  Google Scholar 

  32. Watanabe H, Tanji Y, Unno H, Hori K (2008) Rapid conversion of toluene by an Acinetobacter sp. Tol 5 mutant showing monolayer adsorption to water–oil interface. J Biosci Bioeng 106(3):226–230

    Article  CAS  Google Scholar 

  33. Juteau P, Larocque R, Rho D, LeDuy A (1999) Analysis of the relative abundance of different types of bacteria capable of toluene degradation in a compost biofilter. Appl Microbiol Biotechnol 52(6):863–868

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Spanish Ministry of Science and Innovation (RYC-2007-01667 and BES-2010-030994 contracts and projects CTQ2009-07601 and CONSOLIDER-CSD 2007-00055) and the Regional Government of Castilla y León (VA004A11-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Quijano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estrada, J.M., Rodríguez, E., Quijano, G. et al. Influence of gaseous VOC concentration on the diversity and biodegradation performance of microbial communities. Bioprocess Biosyst Eng 35, 1477–1488 (2012). https://doi.org/10.1007/s00449-012-0737-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0737-x

Keywords

Navigation