Skip to main content
Log in

Enhanced thermotolerance and ethanol tolerance in Saccharomyces cerevisiae mutated by high-energy pulse electron beam and protoplast fusion

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

To increase thermotolerance and ethanol tolerance in Saccharomyces cerevisiae strain YZ1, the strategies of high-energy pulse electron beam (HEPE) and three rounds of protoplast fusion were explored. The YF31 strain had the characteristics of resistant to high-temperature, high-ethanol tolerance, rapid growth and high yield. The YF31 could grow on plate cultures up to 47 °C, containing 237.5 g L−1 of ethanol. In particular, the mutant strain YF31 generated 94.2 ± 4.8 g L−1 ethanol from 200 g glucose L−1 at 42 °C, which was 2.48 times the production of the wild strain YZ1. Results demonstrated that the variant phenotypes from the strains screening by HEPE irradiation could be used as parent stock for yeast regeneration and the protoplast fusion technology is sufficiently powerful in combining suitable characteristics in a single strain for ethanol fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ma M, Liu ZL (2010) Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87(3):829–845

    Article  CAS  Google Scholar 

  2. Stanley D, Bandara A, Fraser S, Chambers PJ, Stanley GA (2010) The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 109(1):13–24

    CAS  Google Scholar 

  3. Olofsson K, Bertilsson M, Liden G (2008) A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1(1):7

    Article  Google Scholar 

  4. Abdel-Banat BM, Hoshida H, Ano A, Nonklang S, Akada R (2010) High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol 85(4):861–867

    Article  CAS  Google Scholar 

  5. Kim HS, Kim NR, Yang J, Choi W (2011) Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 91(4):1159–1172

    Article  CAS  Google Scholar 

  6. Rajoka MI, Ferhan M, Khalid AM (2005) Kinetics and thermodynamics of ethanol production by a thermotolerant mutant of Saccharomyces cerevisiae in a microprocessor-controlled bioreactor. Lett Appl Microbiol 40(5):316–321

    Article  CAS  Google Scholar 

  7. De Virgilio C, Piper P, Boller T, Wiemken A (1991) Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hsp 104 and in the absence of protein synthesis. FEBS Lett 288(1–2):86–90

    Article  Google Scholar 

  8. Leelavatcharamas V, Boonyakamola A, Kishida M, Kawasaki H (2006) Growth characteristics of fusants by protoplast fusion between the thermotolerant yeast, Kluyveromyces marxianus, and the starch-assimilating yeast Schwanniomyces occidentalis. Biocontrol Sci 11(2):81–84

    Article  Google Scholar 

  9. Bandara A, Fraser S, Chambers PJ, Stanley GA (2009) Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress. FEMS Yeast Res 9(8):1208–1216

    Article  CAS  Google Scholar 

  10. Stanley D, Fraser S, Chambers PJ, Rogers P, Stanley GA (2010) Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 37(2):139–149

    Article  CAS  Google Scholar 

  11. Zhao XQ, Bai FW (2009) Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol 144(1):23–30

    Article  CAS  Google Scholar 

  12. Alexandre H, Rousseaux I, Charpentier C (1994) Ethanol adaptation mechanisms in Saccharomyces cerevisiae. Biotechnol Appl Biochem 20(Pt 2):173–183

    CAS  Google Scholar 

  13. Dinh TN, Nagahisa K, Hirasawa T, Furusawa C, Shimizu H (2008) Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. Plos One 3(7):e2623

    Article  Google Scholar 

  14. Ding J, Huang X, Zhang L, Zhao N, Yang D, Zhang K (2009) Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 85(2):253–263

    Article  CAS  Google Scholar 

  15. Dai M, Copley SD (2004) Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol 70(4):2391–2397

    Article  CAS  Google Scholar 

  16. Hida H, Yamada T, Yamada Y (2007) Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Appl Microbiol Biotechnol 73(6):1387–1393

    Article  CAS  Google Scholar 

  17. Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WP, del Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415(6872):644–646

    Article  CAS  Google Scholar 

  18. Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WP, Ryan CM, del Cardayre S (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20(7):707–712

    Article  CAS  Google Scholar 

  19. Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36(1):139–147

    Article  CAS  Google Scholar 

  20. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314(5805):1565–1568

    Article  CAS  Google Scholar 

  21. Zhu H, Xu JZ, Li SQ, Sun XY, Yao SD, Wang SL (2008) Effects of high-energy-pulse-electron beam radiation on biomacromolecules. Sci China Ser B 51(1):86–91

    Article  CAS  Google Scholar 

  22. Farahnak F, Seki T, Ryu DD, Ogrydziak D (1986) Construction of lactose-assimilating and high-ethanol-producing yeasts by protoplast fusion. Appl Environ Microbiol 51(2):362–367

    CAS  Google Scholar 

  23. Jeon BW, Kim KT, Chang SI, Kim HY (2002) Phosphoinositide 3-OH kinase/protein kinase B inhibits apoptotic cell death induced by reactive oxygen species in Saccharomyces cerevisiae. J Biochem 131(5):693–699

    Article  CAS  Google Scholar 

  24. Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Frohlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145(4):757–767

    Article  CAS  Google Scholar 

  25. Edgardo A, Carolina P, Manuel R, Juanita F, Jaime B (2008) Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme Microb Tech 43(2):120–123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Genetically Modified Organisms Breeding Major Projects of China (No.2009ZX08011-032B) and the National Natural Science Foundation of China (Grant No. 31140038) for funding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Long Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 583 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Xiao, Y., Zhu, R. et al. Enhanced thermotolerance and ethanol tolerance in Saccharomyces cerevisiae mutated by high-energy pulse electron beam and protoplast fusion. Bioprocess Biosyst Eng 35, 1455–1465 (2012). https://doi.org/10.1007/s00449-012-0734-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0734-0

Keywords

Navigation