Skip to main content
Log in

A comparison of analytical techniques for evaluating food waste degradation by anaerobic digestion

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Organic matter contained in food waste was degraded by anaerobic digestion under mesophilic and thermophilic conditions at two hydraulic retention times. Evolution of the digestion process was followed by thermogravimetry analysis, fluorescence spectroscopy and 1H nuclear magnetic resonance. All analytical methods suggested that longer retention times might be required for food waste stabilization under mesophilic conditions as compared to thermophilic stabilization. All the analytical methods showed that the stabilization process consisted of two steps, where complex organic molecules were formed during initial stabilization and then digested providing sufficient hydraulic retention time. Longer hydraulic retention times were required for food waste stabilization under mesophilic conditions. Overall, thermal and 1H NMR analyses of the digestate samples might be recommended if more detailed analysis is required, while fluorescence measurements can be used as a fast screening technique, which provides qualitative assessment of the stabilization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  Google Scholar 

  2. Lo KV, Liao PH, March AC (1985) Thermophilic anaerobic digestion of screened dairy manure. Biomass 6:301–315

    Article  CAS  Google Scholar 

  3. Smidt E, Lechner P (2005) Study on the degradation and stabilization or organic matter in waste by means of thermal analyses. Thermochim Acta 438:22–28

    Article  CAS  Google Scholar 

  4. Balmer P, Kaffehr B (1981) Differential thermal analysis for the characterization of the stability of sludge. In: L’Hermite P, Ott H (eds) Characterization, treatment and use of sewage sludge, proceedings of the 2nd European Symposium, Reidel, Dordrecht/Boston/London, 1981 Vienna, 21–23 October 1980

  5. Dell’Abate MT, Canali S, Trinchera A, Benedetti A, Sequi P (1998) Thermal analysis in the evaluation of compost stability: a comparison with humification parameters. Nutr Cycl Agroecosyst 51:217–224

    Article  Google Scholar 

  6. Dell’Abate MT, Benedetti A, Brookes PC (2003) Hyphenated techniques of thermal analysis for characterisation of soil humic substances. J Sep Sci 26:433–440

    Article  Google Scholar 

  7. Otero M, Calvo LF, Estrada B, García AI, Morán A (2002) Thermogravimetry as a technique for establishing the stabilization progress of sludge from wastewater treatment plants. Thermochim Acta 389:121–132

    Article  CAS  Google Scholar 

  8. Klammer S, Knapp B, Insam H, Dell’Abate MT, Ros M (2008) Bacterial community patterns and thermal analyses of composts of various origins. Waste Manag Res 26:173–187

    Article  Google Scholar 

  9. Pons MN, Le Bonté S, Potier O (2004) Spectral analysis and fingerprinting for biomedia characterisation. J Biotechnol 113:211–230

  10. Miano TM, Senesi N (1992) Synchronous excitation fluorescence spectroscopy applied to soil humic substances chemistry. Sci Total Environ 117:41–51

    Article  Google Scholar 

  11. Baker A, Inverarity R, Charlton M, Richmond S (2003) Detecting river pollution using fluorescence spectrophotometry: case studies from the Ouseburn, NE England. Environ Pollut 124:57–70

    Article  CAS  Google Scholar 

  12. Řezáčová V, Gryndler M (2006) Fluorescence spectroscopy: a tool to characterize humic substances in soil colonized by microorganisms. Folia Microbiol 51:215–221

    Article  Google Scholar 

  13. Chen J, LeBoeuf EJ, Dai S, Gu B (2003) Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere 50:639–647

    Article  CAS  Google Scholar 

  14. Tartakosky B, Lishman LA, Legge RL (1996) Application of multi-wavelength fluorimetry for monitoring of wastewater treatment process dynamics. Water Res 30:2941–2948

    Article  Google Scholar 

  15. Hantelmann K, Kollecker M, Hull D, Hitzmann B, Scheper T (2006) Two-dimensional fluorescence spectroscopy: a novel approach for controlling fed-batch cultivations. J Biotechnol 121:410–417

    Article  CAS  Google Scholar 

  16. Fuentes M, Baigorri R, González-Gaitano G, García-Mina JM (2007) The complementary use of 1H NMR, 13C NMR, FTIR and size exclusion chromatography to investigate the principal structural changes associated with composting of organic materials with diverse origin. Org Geochem 38:2012–2023

    Article  CAS  Google Scholar 

  17. Francioso O, Ferrari E, Saladini M, Montecchio D, Gioacchini P, Ciavatta C (2007) TG-DTA, DRIFT and NMR characterisation of humic-like fractions from olive wastes and amended soil. J Hazard Mater 149:408–417

    Article  CAS  Google Scholar 

  18. Adani F, Genevini P, Tambone F, Montoneri E (2006) Compost effect on soil humic acid: a NMR study. Chemosphere 65:1414–1418

    Article  CAS  Google Scholar 

  19. Adani F, Genevini P, Tambone F, Montoneri E (2007) Soil humic acids modification after four years of compost application. Waste Manag 27:319–324

    Article  Google Scholar 

  20. Buddrus J, Burba P, Herzog H, Lambert J (1989) Quantification of partial structures of aquatic humic substances by one- and two-dimensional solution 13C nuclear magnetic resonance spectroscopy. Anal Chem 61:628–631

    Article  CAS  Google Scholar 

  21. Kingery WL, Simpson AJ, Hayes MHB, Locke MA, Hicks RP (2000) The application of multidimensional NMR to the study of soil humic substances. Soil Sci 165:483–494

    Article  CAS  Google Scholar 

  22. Simpson J, Burdon J, Graham CL, Hayes MHB, Spencer N, Kingery WL (2002) Interpretation of heteronuclear and multidimensional NMR spectroscopy of humic substances. Eur J Soil Sci 52:495–509

    Article  Google Scholar 

  23. Gómez X, Cuetos MJ, Prieto JI, Morán A (2009) Bio-hydrogen production from waste fermentation: Mixing and static conditions. Renew Energy 34:970–975

    Article  CAS  Google Scholar 

  24. Schober G, Schäfer J, Schmid-Staiger U, Trösch W (1999) One and two-stage digestion of solid organic waste. Water Res 33:854–860

    Article  CAS  Google Scholar 

  25. Kim JK, Oh BR, Chun YN, Kim SW (2006) Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. J Biosci Bioeng 102:328–332

    Article  CAS  Google Scholar 

  26. APHA-AWWA-WPCF (1989) Standard methods for the examination of water and wastewater 17th edn. American Public Health Association, New York

  27. Gómez X, Cuetos MJ, Cara J, Morán A, García AI (2006) Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes: conditions for mixing and evaluation of the organic loading rate. Renew Energy 31:2017–2024

    Article  CAS  Google Scholar 

  28. Gómez X, Cuetos MJ, García AI, Morán A (2007) An evaluation of stability by thermogravimetric analysis of digestate obtained from different biowastes. J Hazard Mater 149:97–105

    Article  CAS  Google Scholar 

  29. El-Mashad HM, Zeeman G, van Loon WKP, Bot GPA, Lettinga G (2004) Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Biores Technol 95:191–201

    Article  CAS  Google Scholar 

  30. Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles an applications. McGraw-Hill Book Co., New York

    Google Scholar 

  31. Choorit W, Wisarnwan P (2007) Effect of temperature on the anaerobic digestion of palm oil mill effluent. Electron J Biotechnol 10:376–385

    Article  CAS  Google Scholar 

  32. Zhu Y, Chai X, Li H, Zhao Y, Wei Y (2007) Combination of combustion with pyrolysis for studying the stabilization process of sludge in landfill. Thermochim Acta 464:59–64

    Article  CAS  Google Scholar 

  33. Mondini C, Dell’Abate MT, Leita L, Benedetti A (2003) An integrated chemical, thermal and microbiological approach to compost stability evaluation. J Environ Qual 32:2379–2386

    CAS  Google Scholar 

  34. Flaig W, Beutelspacher H, Rietz E (1975) Chemical composition and physical properties of humic substances. In: Gieseking JE (ed) Soil components, vol 1. Springer, Berlin

    Google Scholar 

  35. Font R, Fullana A, Conesa JA, Llavador F (2001) Analysis of the pyrolysis and combustion of different sewage sludges by TG. J Anal Appl Pyrol 58–59:927–941

    Article  Google Scholar 

  36. Laird DA, Chappell MA, Martens DA, Wershaw RL, Thompson M (2008) Distinguishing black carbon from biogenic humic substances in soil clay fractions. Geoderma 143:115–122

    Article  CAS  Google Scholar 

  37. Xu F, Sun JX, Sun R, Fowler P, Baird MS (2006) Comparative study of organosolv lignins from wheat straw. Ind Crops Prod 23:180–193

    Article  CAS  Google Scholar 

  38. Dell’Abate MT, Benedetti A, Sequi P (2000) Thermal methods of organic matter maturation monitoring during a composting process. J Thermal Anal Calorim 61:389–396

    Article  Google Scholar 

  39. Baffi C, Dell’Abate MT, Nassisi A, Silva S, Benedetti A, Genevini PL, Adani F (2007) Determination of biological stability in compost: a comparison of methodologies. Soil Biol Biochem 39:1284–1293

    Article  CAS  Google Scholar 

  40. Carballo T, Gil MV, Gómez X, González-Andrés F, Morán A (2008) Characterization of different compost extracts using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis. Biodegrad 19:815–830

    Article  Google Scholar 

  41. Stewart AJ, Wetzel RG (1980) Fluorescence: absorbance ratios—a molecular-weight tracer of dissolved organic matter. Limnol Oceanogr 25:559–564

    Article  CAS  Google Scholar 

  42. Arunachlam R, Shah HK, Ju LK (2005) Monitoring aerobic sludge digestion by online scanning fluorometry. Water Res 39:1205–1214

    Article  CAS  Google Scholar 

  43. Chen J, Gu B, LeBoeuf EJ, Pan H, Daí S (2002) Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere 48:59–68

    Article  CAS  Google Scholar 

  44. Guillén MD, Ruiz A (2006) Study by means of 1H nuclear magnetic resonance of the oxidation process undergone by edible oils of different natures submitted to microwave action. Food Chem 96:665–674

    Article  CAS  Google Scholar 

  45. Cordeiro N, Belgacem MN, Silvestre AJD, Pascoal-Neto C, Gandini A (1998) Cork suberin as a new source of chemicals. 1. Isolation and chemical characterization of its composition. Int J Biol Macromol 22:71–80

    Article  CAS  Google Scholar 

  46. Aursand M, Mabon F, Martin GJ (1997) High-resolution 1H and 2HNMR spectroscopy of pure essential fatty acids for plants and animals. Magn Reson chem 35:91–100

    Article  Google Scholar 

  47. Ralph J, Lapierre C, Marita JM, Kim H, Lu F, Hatfield RD, Ralph S, Chapple C, Franke R, Hemm MR, Van Doorsselaere J, Sederoff RR, O’Malley DM, Scott JT, MacKay JJ, Yahiaoui N, Boudet AM, Pean M, Pilate G, Jouanin L, Boerjan W (2001) Elucidation of new structures in lignins of CAD- and COMT-deficient plants by NMR. Phytochem 57:993–1003

    Article  CAS  Google Scholar 

  48. Seca AML, Cavaleiro JAS, Domingues FMJ, Silvestre AJD, Evtuguin D, Neto CP (2000) Structural characterization of the lignin from the nodes and internodes of Arundo donax reed. J Agric Food Chem 48:817–824

    Article  CAS  Google Scholar 

  49. Yamauchi K, Kuroki S, Ando I (2002) The amide proton NMR chemical shift and hydrogen-bonded structure of glycine-containing peptides and polypeptides in the solid state as studied by multi-pulse-associated high-speed MAS 1H NMR. J Mol Struct 602–603:9–16

    Article  Google Scholar 

  50. Hertkorn N, Permin A, Perminova I, Kovalevskii D, Yudov M, Petrosyan V, Kettrup A (2002) Comparative analysis of partial structures of a peat humic and fulvic acid using one- and two-dimensional nuclear magnetic resonance spectroscopy. J Environ Qual 31:375–387

    CAS  Google Scholar 

  51. Haw JF, Maciel GE, Schroeder HA (1984) Carbon-13 nuclear magnetic resonance spectrometric study of wood and wood pulping with cross polarization and magic-angle spinning. Anal Chem 56:1323–1329

    Article  CAS  Google Scholar 

  52. Sosanwo OA, Fawcett AH, Apperley D (1995) 13C CPMAS NMR spectra of tropical hardwoods. Polym Int 36:247–259

    Article  CAS  Google Scholar 

  53. Veeken AHM, Adani F, Nierop KGJ, de Jager LA, Hamelers HVM (2001) Degradation of biomacromolecules during high-rate composting of wheat-straw amended feces. J Environ Qual 30:1675–1684

    Article  CAS  Google Scholar 

  54. Vane CH, Martin SC, Snape CE, Abbott GD (2001) Degradation of lignin in wheat straw during growth of the oyster mushroom (Pleurotus ostreatus) using off-line thermochemolysis with tetramethylammonium hydroxide and solid-state 13C-NMR. J Agric Food Chem 49:2709–2716

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank collaboration of the WWTP of León-SALEAL (mancomunidad municipal para el saneamiento integral de León y su alfoz). We thank Dr. Margarida Gairí (NMR Facility at Parc Cientific de Barcelona) for access to 600 MHz spectrometer and M.-F. Manuel (BRI-NRC) for assistance in fluorescence measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, X., Cuetos, M.J., Tartakovsky, B. et al. A comparison of analytical techniques for evaluating food waste degradation by anaerobic digestion. Bioprocess Biosyst Eng 33, 427–438 (2010). https://doi.org/10.1007/s00449-009-0343-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-009-0343-8

Keywords

Navigation