Skip to main content

Advertisement

Log in

Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Combined gasification and fermentation technologies can potentially produce biofuels from renewable biomass. Gasification generates synthesis gas consisting primarily of CO, CO2, H2, N2, with smaller amounts of CH4, NOx, O2, C2 compounds, ash and tars. Several anaerobic bacteria species can ferment bottled mixtures of pure synthesis gas constituents. However, there are challenges to maintaining culture viability of synthesis gas exposed cells. This study was designed to enhance culture stability and improve ethanol-to-acetate ratios using resting (non-growing) cells in synthesis gas fermentation. Resting cell states were induced in autotrophic Clostridium ljungdahlii cultures with minimal ethanol and acetate production due to low metabolic activity compared to growing cell production levels of 5.2 and 40.1 mM of ethanol and acetate. Clostridium autoethanogenum cultures were not induced into true resting states but did show improvement in total ethanol production (from 5.1 mM in growing cultures to 9.4 in one nitrogen-limited medium) as well as increased shifts in ethanol-to-acetate production ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abrini J, Naveau H, Nyns E (1994) Arch Microbiol 161:345–351

    Article  CAS  Google Scholar 

  2. Barik S, Prieto S, Harrison SB, Clausen EC, Gaddy JL (1988) Appl Biochem Biotechnol 28:363–378

    Article  Google Scholar 

  3. Berberich JA, Knutson BL, Strobel HJ, Tarhan S, Nokes SE, Dawson KA (2000) Ind Eng Chem Res 39:4500–4505

    Article  CAS  Google Scholar 

  4. Bryant MP (1972) Am J Clin Nutr 25:1324–1328

    CAS  Google Scholar 

  5. Cotter PD, Hill C (2003) Microbiol Mol Biol Rev 67(3):429–453

    Article  CAS  Google Scholar 

  6. Datar RP, Shenkman RM, Cateni BG, Huhnke RL, Lewis RS (2004) Biotechnol Bioeng 86(5):587–594

    Article  CAS  Google Scholar 

  7. Eriksson T, Borjesson J, Tjerneld F (2002) Enzyme Microb Technol 31(3):353–364

    Article  CAS  Google Scholar 

  8. Förberg C, Enfors SO, Haggstrom L (1983) Appl Microbiol Biotechnol 17(3):143–147

    Article  Google Scholar 

  9. Fordyce AM, Crow VL, Thomas TD (1984) Appl Environ Microbiol 48(2):332–337

    CAS  Google Scholar 

  10. Gaddy JL, Clausen EC (1992) US Pataent 612:221

    Google Scholar 

  11. Gottwald M, Gottschalk G (1985) Arch Microbiol 143:42–46

    Article  CAS  Google Scholar 

  12. Kini KA, Lahiri A (1975) J Sci Ind Res 34(2):97–99

    CAS  Google Scholar 

  13. Klasson KT, Ackerson MD, Clausen EC, Gaddy JL (1992) Enzyme Microb Technol 14:602–608

    Article  CAS  Google Scholar 

  14. Larsson C, Stockar U, Marison I, Gustafsson L (1993) J Bacteriol 175(15):4809–4816

    CAS  Google Scholar 

  15. Lebloas P, Guilbert N, Loubiere P, Lindley ND (1993) J Gen Microbiol 139:1861–1868

    CAS  Google Scholar 

  16. Mielenz JR (2001) Curr Opin Microbiol 4(3):324–329

    Article  CAS  Google Scholar 

  17. Monot F, Engasser JM (1983) Biotechnol Lett 5(4):213–218

    Article  CAS  Google Scholar 

  18. Najafpour G, Younesi H (2006) Enzyme Microb Technol 38:223–228

    Article  CAS  Google Scholar 

  19. Padan E, Zilberstein D, Schuldiner S (1981) Biochim Biophys Acta 650:151–166

    CAS  Google Scholar 

  20. Phillips JR, Clausen EC, Gaddy JL (1994) Appl Biochem Biotechnol 45(46):145–157

    Article  Google Scholar 

  21. Rao G, Mutharasan R (1987) Appl Environ Microbiol 53(6):1232–1235

    CAS  Google Scholar 

  22. Rao G, Mutharasan R (1988) Biotechnol Lett 10(2):129–132

    Article  CAS  Google Scholar 

  23. Saha SK, Sivasanker S (1992) Indian J Technol 30(2):71–76

    CAS  Google Scholar 

  24. Stiles AB, Chen F, Harrison JB, Hu X, Storm DA, Yang HX (1991) Ind Eng Chem Res 30(5):811–821

    Article  CAS  Google Scholar 

  25. Tanner RS, Miller LM, Yang D (1993) Int J Syst Bacteriol 43(2):232–236

    Article  CAS  Google Scholar 

  26. Terracciano JS, Kashket ER (1986) Appl Environ Microbiol 52(1):86–91

    CAS  Google Scholar 

  27. Thomsson E, Larsson C, Albers E, Nilsson A, Franzén GL (2003) Appl Environ Microbiol 69(6):3251–3257

    Article  CAS  Google Scholar 

  28. Vasconcelos I, Girbal L, Soucaille P (1994) J Bacteriol 176(3):1443–1450

    CAS  Google Scholar 

  29. Vega JL, Prieto S, Elmore BB, Clausen EC, Gaddy JL (1989) Appl Biochem Biotechnol 20(21):781–789

    Article  Google Scholar 

  30. White H, Lebertz H, Thanos I, Simon H (1987) FEMS Microbiol Lett 43(2):173–176

    Article  CAS  Google Scholar 

  31. Ying Z, Yang ST (2004) J Biotechnol 110(2):143–157

    Article  CAS  Google Scholar 

  32. Younesi H, Najafpour G, Mohamed AR (2005) Biochem Eng J 27:110–119

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the North Carolina State University Faculty Research and Professional Development Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari S. Chinn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotter, J.L., Chinn, M.S. & Grunden, A.M. Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells. Bioprocess Biosyst Eng 32, 369–380 (2009). https://doi.org/10.1007/s00449-008-0256-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0256-y

Keywords

Navigation