Skip to main content
Log in

Metabolic flux analysis of the sterol pathway in the yeast Saccharomyces cerevisiae

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The yeast Saccharomyces cerevisiae is a useful model system for examining the biosynthesis of sterols in eukaryotic cells. To investigate underlying regulation mechanisms, a flux analysis of the ergosterol pathway was performed. A stoichiometric model was derived based on well known biochemistry of the pathway. The model was integrated in the Software COMPFlux which uses a global optimization algorithm for the estimation of intracellular fluxes. Sterol concentration patterns were determined by gas chromatography in aerobic and anaerobic batch cultivations, when the sterol metabolism was suppressed due to the absence of oxygen. In addition, the sterol concentrations were observed in a cultivation which was shifted from anaerobic to aerobic growth conditions causing the sterol pools in the cell to be filled. From time-dependent flux patterns, possible limitations in the pathway could be localized and the esterification of sterols was identified as an integral part of regulation in ergosterol biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arnezeder C, Hampel WA (1990) Influence of growth rate on the accumulation of ergosterol in yeast - cells. Biotechnol Lett 12(4):277–282

    Article  CAS  Google Scholar 

  2. Bard M., Bruner DA, Pierson CA et al (1996) Cloning and characterization of ERG25, the Saccharomyces cerevisiae gene encoding C-4 sterol methyl oxidase. Proc Natl Acad Sci USA 93(1):186–190

    Article  CAS  Google Scholar 

  3. Bard M, Lees ND, Turi T et al (1993) Sterol synthesis and viability of erg11 (cytochrome P450 lanosterol demethylase) mutations in Saccharomyces cerevisiae and Candida albicans. Lipids 28(11):963–967

    Article  CAS  Google Scholar 

  4. Berndt J, Boll M, Lowel M et al (1973) Regulation of sterol biosynthesis in yeast: induction of 3-hydroxy-3-methylglutaryl-CoA reductase by glucose. Biochem Biophys Res Commun 51(4):843–848

    Article  CAS  Google Scholar 

  5. Corey E, Matsuda JSP, Bartel B (1994) Molecular cloning, characterization, and overexpression of ERG7, the Saccharomyces cerevisiae gene encoding lanosterol synthase. Proc Natl Acad Sci USA 19(6):2211–2215

    Article  Google Scholar 

  6. Daum G, Lees ND, Bard M et al (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14(16):1471–1510

    Article  CAS  Google Scholar 

  7. Desai R, Nielsen PLK, Papoutsakis ET (1999) Stoichiometric modeling of Clostridium acetobutylicum fermentations with non-linear constraints. J Biotechnol 71:191–205

    Article  CAS  Google Scholar 

  8. Gachotte D, Eckstein J, Barbuch R et al (2001) A novel gene conserved from yeast to humans is involved in sterol biosynthesis. J Lipid Res 42(1):150–154

    CAS  Google Scholar 

  9. Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci USA 75(4):1929–1933

    Article  CAS  Google Scholar 

  10. Jensen-Pergakes K, Guo Z, Giattina M et al (2001). Transcriptional regulation of the two sterol esterification genes in the yeast Saccharomyces cerevisiae. J Bacteriol 183(17):4950–4957

    Article  CAS  Google Scholar 

  11. Koukkou A, Tsoukatos ID, Drainas C (1993) Effect of ethanol on the sterols of the fission yeast Schizosaccharomyces pombe. FEMS Microbiol Lett 111(2–3):171–175

    Article  CAS  Google Scholar 

  12. Lorenz RT, Parks LW (1987) Regulation of ergosterol biosynthesis and sterol uptake in a sterol-auxotrophic yeast. J Bacteriol 169(8):3707–3711

    CAS  Google Scholar 

  13. M’Baya B, Fegueur M, Servouse M et al (1989) Regulation of squalene synthetase and squalene epoxidase activities in Saccharomyces cerevisiae. Lipids 24(12):1020–1023

    Article  CAS  Google Scholar 

  14. Nagai J, Kawamura S, Katsuki H (1977) Occurrence of fatty acid esters of sterol intermediates in ergosterol synthesis by yeast during respiratory adaptation. J Biochem 81(6):1665–1673

    CAS  Google Scholar 

  15. Parks L, Bottema WCD, Rodriguez RJ et al (1985) Yeast sterols:yeast mutants as tools for the study of sterol metabolism. Methods Enzymol 111:333–346

    Article  CAS  Google Scholar 

  16. Polakowski T, Stahl U, Lang C (1998) Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl Microbiol Biotechnol 49(1):66–71

    Article  CAS  Google Scholar 

  17. Rosenfeld E, Beauvoit B (2003) Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae. Yeast 20(13):1115–1144

    Article  CAS  Google Scholar 

  18. Servouse M, Karst F (1986) Regulation of early enzymes of ergosterol biosynthesis in Saccharomyces cerevisiae. Biochem J 240(2):541–547

    CAS  Google Scholar 

  19. Smith S, Crowley JJH, Parks LW (1996) Transcriptional regulation by ergosterol in the yeast Saccharomyces cerevisiae. Mol Cell Biol 16(10):5427–5432

    CAS  Google Scholar 

  20. Soustre I, Dupuy PH, Silve S et al (2000) Sterol metabolism and ERG2 gene regulation in the yeast Saccharomyces cerevisiae. FEBS Lett 470(2):102–106

    Article  CAS  Google Scholar 

  21. Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1(1):1–11

    Article  CAS  Google Scholar 

  22. Taylor FR, Parks LW (1978) Metabolic interconversion of free sterols and steryl esters in Saccharomyces cerevisiae. J Bacteriol 136(2):531–537

    CAS  Google Scholar 

  23. Veen M, Lang C (2004) Production of lipid compounds in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 63(6):635–646

    Article  CAS  Google Scholar 

  24. Veen M, Stahl U, Lang C (2003) Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols on Saccharomyces cerevisiae. FEMS Yeast Res 4(1):87–95

    Article  CAS  Google Scholar 

  25. Yabusaki Y, Nishino T, Ariga N et al (1979) Studies on delta8-delta7 isomerization and methyl transfer of sterols in ergosterol biosynthesis of yeast. J Biochem 85(6):1531–1537

    CAS  Google Scholar 

  26. Yang H, Bard M, Bruner DA et al (1996) Sterol esterification in yeast:a two-gene process. Science 272(5266):1353–1356

    Article  CAS  Google Scholar 

  27. Zweytick D, Hrastnik C, Kohlwein SD et al (2000) Biochemical characterization and subcellular localization of the sterol C-24(28) reductase, erg4p, from the yeast Saccharomyces cerevisiae. FEBS Lett 470(1):83–87

    Article  CAS  Google Scholar 

  28. Zweytick D, Leitner E, Kohlwein SD et al (2000) Contribution of Are1p and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae. Eur J Biochem 267(4):1075–1082

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Eun-Soo Jeong for the intensive literature research and Sigrid Krogager for technical assistance. Further, we thank Daniel Wicke for identification of sterols by GC-MS. This work was supported by the Deutsche Forschungsgemeinschaft, grant no. GO 1117/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Goetz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maczek, J., Junne, S., Nowak, P. et al. Metabolic flux analysis of the sterol pathway in the yeast Saccharomyces cerevisiae . Bioprocess Biosyst Eng 29, 241–252 (2006). https://doi.org/10.1007/s00449-006-0072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-006-0072-1

Keywords

Navigation