Skip to main content

Advertisement

Log in

Contrasting origin of two clay-rich debris flows at Cayambe Volcanic Complex, Ecuador

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

We investigate the sedimentological and mineralogical properties of a debris flow deposit west of Cayambe Volcanic Complex, an ice-clad edifice in Ecuador. The deposit exhibits a matrix facies containing up to 16 wt% of clays. However, the stratigraphic relationship of the deposit with respect to the Canguahua Formation, a widespread indurated volcaniclastic material in the Ecuadorian inter-Andean Valley, and the deposit alteration mineralogy differ depending on location. Thus, two different deposits are identified. The Río Granobles debris flow deposit (~1 km3) is characterised by the alteration mineral assemblage smectite + jarosite, and sulphur isotopic analyses point to a supergene hydrothermal alteration environment. This deposit probably derives from a debris avalanche initiated before 14–21 ka by collapse of a hydrothermally altered rock mass from the volcano summit. In contrast, the alteration mineralogy of the second debris flow deposit, which may itself comprise more than one unit, is dominated by halloysite + smectite and relates to a shallower and more recent (<13 ky) mass movement of high-altitude (>3200 m) volcanic soils. Our study reinforces the significance of hydrothermal alteration in weakening volcano flanks and in favouring rapid transformation of a volcanic debris avalanche into a clay-rich debris flow. It also demonstrates that mineralogical analysis provides crucial information for resolving the origin of a debris flow deposit in volcanic terrains. Finally, we posit that slope instability, promoted by ongoing subglacial hydrothermal alteration, remains a significant hazard at Cayambe Volcanic Complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bernard B (2008) Étude des dépôts d'avalanche de débris volcaniques: analyse sédimentologique d'exemples naturels et identification des mécanismes de mise en place . Université Blaise Pascal, FranceMsc Thesis

    Google Scholar 

  • Bish DL, Post JE (1993) Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. Am Mineral 78:932–940

    Google Scholar 

  • Capra L, Macias JL (2000) Pleistocene cohesive debris flows at Nevado de Toluca Volcano, central Mexico. J Volcanol Geoth Res 102:149–167

    Article  Google Scholar 

  • Capra L, Macias JL, Scott KM, Abrams M, Garduno-Monroy VH (2002) Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic belt, Mexico—behavior, and implications for hazard assessment. J Volcanol Geoth Res 113:81–110

    Article  Google Scholar 

  • Carrasco-Núñez G, Vallance GW, Rose WI (1993) A voluminous avalanche-induced lahar from Citlaltépetl volcano, Mexico: implications for hazard assessment. J Volcanol Geotherm Res 59:35–46

    Article  Google Scholar 

  • Clapperton CM, Vera R (1986) The Quaternary glacial sequence in Ecuador: a reinterpretation of the work of Walter Sauer. J Quaternary Sci 1:45–56

    Article  Google Scholar 

  • Colinvaux PA, Olson K, Liu KB (1988) Late-glacial and holocene pollen diagrams from two endorheic lakes of the inte-Andean plateau of Ecuador. Review Palaeobot Palyno 55:83–99

    Article  Google Scholar 

  • Crandell DR (1971) Postglacial lahars from Mount Rainier volcano, Washington. U.S. Geol Surv Prop Pap 677

  • Crandell DR (1989) Gigantic debris avalanche of Pleistocene age from ancestral Mount Shasta volcano, California, and debris-avalanche hazard zonation. U.S. Geol Surv Bull 1861

  • Fejdi P, Holocsy A (2001) Relationship between crystal morphology and preferred orientation in polycrystalline specimens for diffraction experiments. Mater Struct 8:22–24

    Google Scholar 

  • Finn CA, Deszcz-Pan M, Anderson ED, John DA (2007) Three-dimensional geophysical mapping of rock alteration and water content at Mount Adams, Washington: implications for lahar hazards. J Geophys Res-Sol Ea 112:B10204

    Article  Google Scholar 

  • Folk RL, Ward WC (1957) Brazos river bar: a study of the significance of grain size parameters. J Sediment Petrol 27:3–26

    Article  Google Scholar 

  • Frolova JV, Ladygin VM, Rychagov S, Zukhubaya D (2014) Effects of hydrothermal alterations on physical and mechanical properties of rocks in the Kuril–Kamchatka island arc. Eng Geol 183:80–95

    Article  Google Scholar 

  • Glicken H (1996) Rockslide-debris avalanche of May 18, 1980, Mount St. Helens volcano, Washington. U.S. Geol Surv Open-file Report 96–677

  • Guillier B, Chatelain J-L (2006) Evidence for a seismic activity mainly constituted of hybrid events at Cayambe volcano, Ecuador: interpretation in a iced-domes volcano context. Compt Rendus Geosci 338:499–506

    Article  Google Scholar 

  • Hall ML, Mothes PA (1996) La edad y tasas de formacion de la Cangahua. In: Simposio “Suelos Volcanicos Endurecidos”, 7–14 December 1996, Quito

  • Henley RW, Ellis AJ (1983) Geothermal systems, ancient and modern. Earth Sci Rev 19:1–50

    Article  Google Scholar 

  • Houghton BF, Hegan BD (1980) A preliminary assessment of geological factors influencing slope stability and landslipping in and around Tauranga City. New Zealand Geological Survey Engineering Geology Report EG 348

  • Inman DL (1952) Measures for describing the size distribution of sediments. J Sediment Petrol 22:125–145

    Google Scholar 

  • Inoue A (1995) Formation of clay minerals in hydrothermal environments. In: Velde B (ed) Origin and mineralogy of clays. Springer, Berlin, pp 268–329

    Chapter  Google Scholar 

  • Iverson RM, Reid ME, LaHusen RG (1997) Debris-flow mobilization from landslides. Annu Rev Earth Pl Sc 25:85–138

    Article  Google Scholar 

  • Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. Geol Soc Am Bull 110:972–984

    Article  Google Scholar 

  • Joussein E, Petit S, Delvaux B (2007) Behavior of halloysite clay under formamide treatment. Appl Clay Sci 35:17–24

    Article  Google Scholar 

  • Pansu M, Gautheyrou J (2006) Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Quantin P (1997) Régénération et Conservation des Sols Volcaniques Indurés et Stériles d'Amérique Latine (Chili, Equateur, Mexique). European Union Report:TS3–CT930252

  • Quantin P, Zebrowski C (1996) Analyse préliminaire (chimie, minéralogie, pétrographie) de quelques types de cangahua. Los suelos con cangahua en el Ecuador. In Memoria del III Simposio Internacional sobre Suelos Endurecidos, Quito, pp 29–47

    Google Scholar 

  • Reid ME, Sisson TW, Brien DL (2001) Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington. Geology 29:779–782

    Article  Google Scholar 

  • Robert M, Tessier D (1974) Méthode de préparation des argiles des sols pour des études minéralogiques. Ann Agron 25:859–882

    Google Scholar 

  • Rodbell DT, Bagnato S, Nebolini JC, Seltzer GO, Abbot MB (2002) A late Glacial–Holocene tephrochronology for glacial lakes in southern Ecuador. Quat Res 57:343–354

    Article  Google Scholar 

  • Rye RO (2005) A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chem Geol 215:5–36

    Article  Google Scholar 

  • Samaniego P, Monzier M, Robin C, Hall ML (1998) Late Holocene eruptive activity at Nevado Cayambe volcano, Ecuador. B Volcanol 59:451–459

    Article  Google Scholar 

  • Samaniego P, Eissen JP, Monzier M, Robin C, Alvarado A, Yepes H (2004) Los peligros volcanicos asociados con el Cayambe. Corporaciòn Editora Nacional, Quito

    Google Scholar 

  • Samaniego P, Martin H, Monzier M, Robin C, Fornari M, Eissen JP, Cotten J (2005) Temporal evolution of magmatism in the Northern Volcanic Zone of the Andes: the geology and petrology of Cayambe Volcanic Complex (Ecuador). J Petrol 46:2225–2252

    Article  Google Scholar 

  • Sánchez MV, Genise JF, Bellosi ES, Román-Carrión JL, Cantil LF (2013) Dung beetle brood balls from Pleistocene highland palaeosols of Andean Ecuador: a reassessment of Sauer’s Coprinisphaera and their palaeoenvironments. Palaeogeogr Palaeocl 386:257–274

    Article  Google Scholar 

  • Scott KM, Vallance JW (1995) Debris flow, debris avalanche, and flood hazards at and downstream from Mount Rainier, Washington. U.S. Geol Surv Hydrol Inv Atlas HA-729:1–9

    Google Scholar 

  • Scott WE, Pierson TC, Schilling SP, Costa JE, Gardner CA, Vallance JW, Major JJ (1997) Volcano hazards in the Mount Hood region, Oregon. U.S. Geol Surv Open-File Report 97–89

  • Scott KM, Macías JL, Naranjo JA, Rodríguez S, McGeehin JP (2001) Catastrophic debris flows transformed from landslides in volcanic terrains: mobility, hazard assessment, and mitigation strategies. U.S. Geoll Surv Prof Pap 1–59

  • Siebert L, Glicken H, Ui T (1987) Volcanic hazards from Bezymianny- and Bandai-type eruptions. B Volcanol 49:435–459

    Article  Google Scholar 

  • Stoopes GR, Sheridan MF (1992) Giant debris avalanches from the Colima Volcanic Complex, Mexico: implications for long-runout landslides (> 100 km) and hazard assessment. Geology 20:299–302

    Article  Google Scholar 

  • Taylor J (1991) Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffract 6:2–9

    Article  Google Scholar 

  • Taylor J, Matulis C (1991) Absorption contrast effects in the quantitative XRD analysis of powders by full multiphase profile refinement. J Appl Crystallogr 24:14–17

    Article  Google Scholar 

  • Vallance JW (2005) Volcanic debris flows. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Berlin Heidelberg, pp 247–274

    Chapter  Google Scholar 

  • Vallance JW, Scott KM (1997) The Osceola mudflow from Mount Rainier: sedimentology and hazard implication of a huge clay-rich debris flow. Geol S Am 109:143–163

    Article  Google Scholar 

  • Wesley LD (1977) Shear strength properties of halloysite and allophane clays in Java, Indonesia. Géotechnique 27:125–136

    Article  Google Scholar 

  • Winckell A, Zebrowski C (1992) Cangahua in Ecuador: the paleogeographic context of its formation. Terrain 10:107–112

    Google Scholar 

  • Wyatt J (2009) Sensitivity and clay mineralogy of weathered tephra-derived soil materials in the Tauranga region . University of Waikato, New ZealandMsc Thesis

    Google Scholar 

  • Zehetner F, Miller WP, West LT (2003) Pedogenesis of volcanic ash soils in Andean Ecuador. Soil Sci Soc Am J 67:1797–1809

    Article  Google Scholar 

  • Zimbelman DR, Watters RJ, Firth IR, Breit GN, Carrasco-Núñez G (2004) Stratovolcano stability assessment methods and results from Citlaltépetl, Mexico. B Volcanol 66:66–79

    Article  Google Scholar 

  • Zimbelman DR, Rye RO, Breit GN (2005) Origin of secondary sulfate minerals on active andesitic stratovolcanoes. Chem Geol 215:37–60

    Article  Google Scholar 

Download references

Acknowledgements

MD is supported by a Belgium FNRS-aspirant studentship (2012-16, 1121315F). PD gratefully acknowledges Prof. Ernesto de la Torre and the Escuela Politécnica Nacional in Quito for facilitating field work. We warmly thank Jorge Bustillos and Evelyne Criollo for help in the field, Anne Iserentant for laboratory assistance and Philippe Sonnet and Alain Bernard for insightful discussion. Alain Bernard kindly provided access to SEM-EDX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Delmelle.

Additional information

Editorial responsibility: L. Capra

Electronic supplementary material

ESM 1

(DOCX 3437 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Detienne, M., Delmelle, P., Guevara, A. et al. Contrasting origin of two clay-rich debris flows at Cayambe Volcanic Complex, Ecuador. Bull Volcanol 79, 27 (2017). https://doi.org/10.1007/s00445-017-1111-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-017-1111-2

Keywords

Navigation