Skip to main content
Log in

Field and experimental constraints on the rheology of arc basaltic lavas: the January 2014 Eruption of Pacaya (Guatemala)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

We estimated the rheology of an active basaltic lava flow in the field, and compared it with experimental measurements carried out in the laboratory. In the field we mapped, sampled, and recorded videos of the 2014 flow on the southern flank of Pacaya, Guatemala. Velocimetry data extracted from videos allowed us to determine that lava traveled at ∼2.8 m/s on the steep ∼45° slope 50 m from the vent, while 550 m further downflow it was moving at only ∼0.3 m/s on a ∼4° slope. Estimates of effective viscosity based on Jeffreys’ equation increased from ∼7600 Pa s near the vent to ∼28,000 Pa s downflow. In the laboratory, we measured the viscosity of a representative lava composition using a concentric cylinder viscometer, at five different temperatures between 1234 and 1199 °C, with crystallinity increasing from 0.1 to 40 vol%. The rheological data were best fit by power law equations, with the flow index decreasing as crystal fraction increased, and no detectable yield strength. Although field-based estimates are based on lava characterized by a lower temperature, higher crystal and bubble fraction, and with a more complex petrographic texture, field estimates and laboratory measurements are mutually consistent and both indicate shear-thinning behavior. The complementary field and laboratory data sets allowed us to isolate the effects of different factors in determining the rheological evolution of the 2014 Pacaya flows. We assess the contributions of cooling, crystallization, and changing ground slope to the 3.7-fold increase in effective viscosity observed in the field over 550 m, and conclude that decreasing slope is the single most important factor over that distance. It follows that the complex relations between slope, flow velocity, and non-Newtonian lava rheology need to be incorporated into models of lava flow emplacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Armstrong JT (1995) CITZAF: a package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Anal 4:177–200

    Google Scholar 

  • Avard G, Whittington AG (2012) Rheology of arc dacite lavas: experimental determination at low strain rates. Bull Volcanol 74(5):1039–1056. doi:10.1007/s00445-012-0584-2

    Article  Google Scholar 

  • Bardintzeff JM, Deniel C (1992) Magmatic evolution of Pacaya and Cerro Chiquito volcanological complex, Guatemala. Bull Volcanol 54(4):267–283. doi:10.1007/BF00301482

    Article  Google Scholar 

  • Barnes HA (1999) The yield stress—a review or ‘παντα ρει’—everything flows? J Nonnewt Fluid Mech 81(1):133–178. doi:10.1016/S0377-0257(98)00094-9

    Article  Google Scholar 

  • Bollasina AJ (2014) The May 2010 eruption of Pacaya volcano, Guatemala: An experimental study of subliquidus magma rheology. M.S. Thesis, University of Missouri

  • Cimarelli C, Costa A, Mueller S, Mader HM (2011) Rheology of magmas with bimodal crystal size and shape distributions: Insights from analog experiments. Geochem Geophys Geosyst 12(7). doi:10.1029/2011GC003606

  • Costa A, Caricchi L, Bagdassarov N (2009) A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem Geophy Geosy 10(3). doi:10.1029/2008GC002138

  • Dingwell DB (1995) Viscosity and Anelasticity of Melts. Mineral Physics & Crystallography: A Handbook of Physical Constants 209–217. doi:10.1029/RF002p0209

  • Dingwell DB, Virgo D (1988) Viscosities of melts in the Na2O-FeO-Fe2O3-SiO2 system and factors controlling relative viscosities of fully polymerized silicate melts. Geochim Cosmochim Acta 52(2):395–403. doi:10.1016/0016-7037(88)90095-6

    Article  Google Scholar 

  • Eggers AA (1971) The geology and petrology of the Amatitlán quadrangle, Guatemala. Dissertation, Dartmouth College

  • Faroughi SA, Huber C (2014) Crowding-based rheological model for suspensions of rigid bimodal-sized particles with interfering size ratios. Phys Rev E 90(5):052303. doi:10.1103/PhysRevE.90.052303

    Article  Google Scholar 

  • Faroughi SA, Huber C (2015) A generalized equation for rheology of emulsions and suspensions of deformable particles subjected to simple shear at low Reynolds number. Rheol Acta 54(2):85–108. doi:10.1007/s00397-014-0825-8

    Article  Google Scholar 

  • Fink JH, Zimbelman JR (1986) Rheology of the 1983 Royal Gardens basalt flows, Kilauea volcano, Hawaii. Bull Volcanol 48(2–3):87–96. doi:10.1007/BF01046544

    Article  Google Scholar 

  • Gauthier F (1973) Field and laboratory studies of the rheology of Mount Etna lava. Philos Trans R Soc A 274(1238):83–98. doi:10.1098/rsta.1973.0028

    Article  Google Scholar 

  • Getson JM, Whittington AG (2007) Liquid and magma viscosity in the anorthite-forsterite-diopside-quartz system and implications for the viscosity-temperature paths of cooling magmas. J Geophys Res-Sol Ea (1978–2012), 112(B10). doi:10.1029/2006JB004812

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119(2–3):197–212. doi:10.1007/BF00307281

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271(1):123–134. doi:10.1016/j.epsl.2008.03.038

    Article  Google Scholar 

  • Griffiths RW (2000) The dynamics of lava flows. Annu Rev Fluid Mech 32(1):477–518. doi:10.1146/annurev.fluid.32.1.477

    Article  Google Scholar 

  • Hon K, Gansecki C, Kauahikaua J (2003) The transition from `a`ā to pāhoehoe crust on flows emplaced during the Pu`u `Ō`ō-Kūpaianaha eruption. In: Heliker C, Swanson DA, Takahashi TJ (eds) The Pu`u `Ō`ō-Kūpaianaha eruption of Kilauea Volcano, Hawai`i: the first 20 years, vol 1676, U S Geol Surv Prof Pap., pp 63–87

    Google Scholar 

  • Hui H, Zhang Y (2007) Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim Cosmochim Acta 71(2):403–416. doi:10.1016/j.gca.2006.09.003

    Article  Google Scholar 

  • Hulme G (1974) The interpretation of lava flow morphology. Geophys J Int 39(2):361–383. doi:10.1111/j.1365-246X.1974.tb05460.x

    Article  Google Scholar 

  • Ishibashi H (2009) Non-Newtonian behavior of plagioclase-bearing basaltic magma: subliquidus viscosity measurement of the 1707 basalt of Fuji volcano, Japan. J Volcanol Geotherm Res 181(1):78–88. doi:10.1016/j.jvolgeores.2009.01.004

    Article  Google Scholar 

  • Ishibashi H, Sato H (2007) Viscosity measurements of subliquidus magmas: alkali olivine basalt from the Higashi-Matsuura district, Southwest Japan. J Volcanol Geotherm Res 160(3):223–238. doi:10.1016/j.jvolgeores.2006.10.001

    Article  Google Scholar 

  • Ishibashi H, Sato H (2010) Bingham fluid behavior of plagioclase-bearing basaltic magma: reanalyses of laboratory viscosity measurements for Fuji 1707 basalt. J Mineral Petrol Sci 105(6):334–339. doi:10.2465/jmps.100611

    Article  Google Scholar 

  • Jeffreys H (1925) The flow of water in an inclined channel of rectangular section. Philos Mag 49:793–807. doi:10.1080/14786442508634662

    Article  Google Scholar 

  • Lev E, James MR (2014) The influence of cross-sectional channel geometry on rheology and flux estimates for active lava flows. Bull Volcanol 76:1–15. doi:10.1007/s00445-014-0829-3

    Article  Google Scholar 

  • Lev E, Spiegelman M, Wysocki RJ, Karson JA (2012) Investigating lava flow rheology using video analysis and numerical flow models. J Volcanol Geotherm Res 247:62–73. doi:10.1016/j.jvolgeores.2012.08.002

    Article  Google Scholar 

  • Llewellin EW, Manga M (2005) Bubble suspension rheology and implications for conduit flow. J Volcanol Geotherm Res 143(1):205–217. doi:10.1016/j.jvolgeores.2004.09.018

    Article  Google Scholar 

  • Mader HM, Llewellin EW, Mueller SP (2013) The rheology of two-phase magmas: a review and analysis. J Volcanol Geotherm Res 257:135–158. doi:10.1016/j.jvolgeores.2013.02.014

    Article  Google Scholar 

  • Manga M, Loewenberg M (2001) Viscosity of magmas containing highly deformable bubbles. J Volcanol Geotherm Res 105(1):19–24. doi:10.1016/S0377-0273(00)00239-0

    Article  Google Scholar 

  • Manga M, Castro J, Cashman KV, Loewenberg M (1998) Rheology of bubble-bearing magmas. J Volcanol Geotherm Res 87(1):15–28. doi:10.1016/S0377-0273(98)00091-2

    Article  Google Scholar 

  • Marsh BD (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib Mineral Petrol 78(1):85–98. doi:10.1007/BF00371146

    Article  Google Scholar 

  • Matías Gomez RO (2009) Volcanological Map of the 1961–2009 eruption of Volcan de Pacaya, Guatemala. Dissertation, Michigan Technological University

  • Moitra P, Gonnermann HM (2015) Effects of crystal shape-and size-modality on magma rheology. Geochem Geophys Geosyst 16(1):1–26. doi:10.1002/2014GC005554

    Article  Google Scholar 

  • Moore HJ, Arthur DWG, Schaber GG (1978) Yield strengths of flows on the Earth, Mars, and Moon. P Lunar Planet Sci C 9:3351–3378

    Google Scholar 

  • Morgan HA, Harris AJ, Gurioli L (2013) Lava discharge rate estimates from thermal infrared satellite data for Pacaya Volcano during 2004–2010. J Volcanol Geotherm Res 264:1–11. doi:10.3390/rs8010073

    Article  Google Scholar 

  • Mueller S, Llewellin EW, Mader HM (2010) The rheology of suspensions of solid particles. P Roy Soc A Math Phys 466(2116):1201–1228. doi:10.1098/rspa.2009.0445

    Article  Google Scholar 

  • Mueller S, Llewellin EW, Mader HM (2011) The effect of particle shape on suspension viscosity and implications for magmatic flows. Geophys Res Lett 38(13). doi:10.1029/2011GL047167

  • Pal R (2003) Rheological behavior of bubble-bearing magmas. Earth Planet Sci Lett 207(1):165–179. doi:10.1016/S0012-821X(02)01104-4

    Article  Google Scholar 

  • Peterson DW, Tilling RI (1980) Transition of basaltic lava from pahoehoe to aa, Kilauea Volcano, Hawaii: field observations and key factors. J Volcanol Geotherm Res 7(3):271–293. doi:10.1016/0377-0273(80)90033-5

    Article  Google Scholar 

  • Phan-Thien N, Pham DC (1997) Differential multiphase models for polydispersed suspensions and particulate solids. J Non-Newton Fluid 72(2):305–318. doi:10.1016/S0377-0257(97)90002-1

    Article  Google Scholar 

  • Pinkerton H, Norton G (1995) Rheological properties of basaltic lavas at sub-liquidus temperatures: laboratory and field measurements on lavas from Mount Etna. J Volcanol Geotherm Res 68(4):307–323. doi:10.1016/0377-0273(95)00018-7

    Article  Google Scholar 

  • Pinkerton H, Stevenson RJ (1992) Methods of determining the rheological properties of magmas at sub-liquidus temperatures. J Volcanol Geotherm Res 53(1):47–66. doi:10.1016/0377-0273(92)90073-M

    Article  Google Scholar 

  • Robert G (2014) The effects of volatiles on the viscosity and heat capacity of calc-alkaline basaltic and basaltic andesite liquids. Dissertation, University of Missouri-Columbia

  • Robert B, Harris A, Gurioli L, Médard E, Sehlke A, Whittington AG (2014) Textural and rheological evolution of basalt flowing down a lava channel. Bull Volcanol 76(6):1–21. doi:10.1007/s00445-014-0824-8

    Article  Google Scholar 

  • Roscoe R (1952) The viscosity of suspensions of rigid spheres. Br J Appl Phys 3(8):267

    Article  Google Scholar 

  • Rose WI, Palma JL, Wolf RE, Gomez RO (2013) A 50 yr eruption of a basaltic composite cone: Pacaya, Guatemala. Geol Soc Am 498:1–21. doi:10.1088/0508-3443/3/8/306

    Google Scholar 

  • Rust AC, Manga M (2002) Bubble shapes and orientations in low Re simple shear flow. J Colloid Interf Sci 249(2):476–480. doi:10.1006/jcis.2002.8292

    Article  Google Scholar 

  • Ryerson FJ, Weed HC, Piwinskii AJ (1988) Rheology of subliquidus magmas: 1. Picritic compositions. J Geophys Res-Sol Ea (1978–2012) 93(B4):3421–3436. doi:10.1029/JB093iB04p03421

    Article  Google Scholar 

  • Schaefer LN, Oommen T, Corazzato C, Tibaldi A, Escobar-Wolf R, Rose WI (2013) An integrated field-numerical approach to assess slope stability hazards at volcanoes: the example of Pacaya, Guatemala. Bull Volcanol 75(6):1–18. doi:10.1007/s00445-013-0720-7

    Article  Google Scholar 

  • Schuessler JA, Botcharnikov RE, Behrens H, Misiti V, Freda C (2008) Amorphous materials: properties, structure, and durability: oxidation state of iron in hydrous phono-tephritic melts. Am Mineral 93(10):1493–1504. doi:10.2138/am.2008.2795

    Article  Google Scholar 

  • Sehlke A, Whittington AG, Robert B, Harris A, Gurioli L, Médard E (2014) Pahoehoe to aa transition of Hawaiian lavas: an experimental study. Bull Volcanol 76(11):1–20. doi:10.1007/s00445-014-0876-9

    Article  Google Scholar 

  • Shaw HR, Wright TL, Peck DL, Okamura R (1968) The viscosity of basaltic magma; an analysis of field measurements in Makaopuhi lava lake, Hawaii. Am J Sci 266(4):225–264. doi:10.2475/ajs.266.4.225

    Article  Google Scholar 

  • Sparks RSJ, Pinkerton H, Hulme G (1976) Classification and formation of lava levees on Mount Etna, Sicily. Geology 4(5):269–271. doi:10.1130/0091-7613(1976)4<269:CAFOLL>2.0.CO;2

    Article  Google Scholar 

  • Spera FJ (2000) Physical properties of magmas. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J, McBirney AR (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 171–190

    Google Scholar 

  • Truby JM, Mueller SP, Llewellin EW, Mader HM (2015) The rheology of three-phase suspensions at low bubble capillary number. Proc Roy Soc Lond A Mat 471(2173):20140557. doi:10.1098/rspa.2014.0557

    Article  Google Scholar 

  • Vallance JW, Siebert L, Rose WI, Girón JR, Banks NG (1995) Edifice collapse and related hazards in Guatemala. J Volcanol Geotherm Res 66(1):337–355. doi:10.1016/0377-0273(94)00076-S

    Article  Google Scholar 

  • Vogel H (1921) The law of the relation between the viscosity of liquids and the temperature. Z Phys 22:645–646

    Google Scholar 

  • Webb SL, Dingwell DB (1990) The onset of non-Newtonian rheology of silicate melts. Phys Chem Miner 17(2):25–132. doi:10.1007/BF00199663

    Article  Google Scholar 

  • Whittington AG, Hellwig BM, Behrens H, Joachim B, Stechern A, Vetere F (2009) The viscosity of hydrous dacitic liquids: implications for the rheology of evolving silicic magmas. Bull Volcanol 71(2):185–199. doi:10.1007/s00445-008-0217-y

    Article  Google Scholar 

  • Wilson AD (1960) The micro-determination of ferrous iron in silicate minerals by a volumetric and a colorimetric method. Analyst 85(1016):823–827. doi:10.1039/AN9608500823

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation grant EAR-1220051. Logistical support in Guatemala was provided by Instituto Nacional de Sismología, Vulcanología, Meterología e Hidrología (INSIVUMEH); in particular we thank INSIVUMEH Director Don Eddy Sanchez Bennett, and volcano observers Pastor and Luíz. José was our guide on the flows. Paul Carpenter assisted us with microprobe analyses at Washington University in St. Louis. We are grateful to reviewers Einat Lev and Ed Llewellin for their thorough and constructive comments, which greatly contributed to improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Soldati.

Additional information

Editorial responsibility: M.R. Patrick

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldati, A., Sehlke, A., Chigna, G. et al. Field and experimental constraints on the rheology of arc basaltic lavas: the January 2014 Eruption of Pacaya (Guatemala). Bull Volcanol 78, 43 (2016). https://doi.org/10.1007/s00445-016-1031-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1031-6

Keywords

Navigation