Skip to main content
Log in

The ∼AD 1250 effusive eruption of El Metate shield volcano (Michoacán, Mexico): magma source, crustal storage, eruptive dynamics, and lava rheology

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Medium-sized volcanoes, also known as Mexican shields due to their andesitic composition and slightly higher slope angles in comparison to Icelandic shields, occur across the Trans-Mexican Volcanic Belt and represent nearly one third of all volcanic edifices in the Michoacán-Guanajuato Volcanic Field (MGVF). Many questions about their origin and eruptive dynamics remain unanswered. Here, we focus on El Metate, the youngest (∼AD 1250) monogenetic shield volcano of the MGVF and the most voluminous (∼9.2 km3 dense rock equivalent) Holocene eruption in Mexico. Its eruptive history was reconstructed through detailed mapping, geochemical analysis (major and trace elements, Sr-Nd-Pb isotopic data), and rheological study of its thick andesitic flows. Early and late flow units have distinct morphologies, chemical and mineralogical compositions, and isotopic signatures which show that these lavas were fed by two separate magma batches that originated from a heterogeneous mantle source and followed distinct differentiation paths during their ascent. Thermobarometry calculations constraining the conditions of crystallization indicate a temporary storage of the last erupted magma batch at a depth of ∼7–10 km. Lava rheology was estimated using petrographic characteristics, geochemical data, and flow dimensions. The magma viscosity increased from 102–103 Pa s prior to eruption through 106–108 Pa s during ascent, to 109–1011 Pa s during lava emplacement. Though magma viscosity was quite high, the eruption was purely effusive. The explosive eruption of such a large magma volume was probably avoided due to efficient open system degassing (outgassing) of the magma as it ascended through the uppermost crust and erupted at the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ban M, Hasenaka T, Delgado-Granados H, Takaoka N (1992) K-Ar ages of lavas from shield volcanoes in the Michoacán-Guanajuato volcanic field, México. Geofis Int 31(4):467–473

    Google Scholar 

  • Baptista AR, Mangold N, Ansan V, Baratoux D, Masson P, Lognonné P, Williams D, Bleacher JE, Neukum G (2008) A swarm of small shield volcanoes on Syria Planum, Mars. J Geophys Res 113:E09010

    Google Scholar 

  • Beattie P (1993) Olivine-melt and orthopyroxene-melt equilibria. Contrib Mineral Petrol 115:103–111

    Article  Google Scholar 

  • Blatter DL, Hammersley L (2010) Impact of the Orozco Fracture Zone on the central Mexican Volcanic Belt. J Volcanol Geoth Res 197:67–84

    Article  Google Scholar 

  • Brenna M, Cronin SJ, Smith IEM, Kwan Sohn Y, Németh K (2010) Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contrib Mineral Petrol 160:931–950

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Article  Google Scholar 

  • Caricchi L, Burlini L, Ulmer P, Gerya T, Vassalli M, Papale P (2007) Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth Planet Sci Lett 264:402–419

    Article  Google Scholar 

  • Carmichael ISE (2002) The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–99°W) Mexico. Contrib Mineral Petrol 143:641–663

    Article  Google Scholar 

  • Cashman KV (2004) Volatile controls on magma ascent and eruption. In: Sparks RSJ, Hawkesworth CJ (eds) The state of the planet: frontiers and challenges in geophysics. Geophysical Monograph 150 Washington DC, Am Geophys Union

  • Castruccio A, Rust AC, Sparks RSJ (2010) Rheology and flow of crystal-bearing lavas: insights from analogue gravity currents. Earth Planet Sci Lett 297:471–480

    Article  Google Scholar 

  • Castruccio A, Rust AC, Sparks RSJ (2013) Evolution of crust- and core-dominated lava flows using scaling analysis. Bull Volcanol 75:681

    Article  Google Scholar 

  • Castruccio A, Rust AC, Sparks RSJ (2014) Assessing lava flow evolution from post-eruption field data using Herschel–Bulkley rheology. J Volcanol Geoth Res 275:71–84

    Article  Google Scholar 

  • Chevrel MO, Platz T, Hauber E, Baratoux D, Lavallée Y, Dingwell DB (2013) Lava flow rheology: a comparison of morphological and petrological methods. Earth Planet Sci Lett 384:109–120

    Article  Google Scholar 

  • Chevrel MO, Siebe C, Guilbaud M-N, Salinas S (2016) The AD 1250 El Metate shield volcano (Michoacán): Mexico’s most voluminous Holocene eruption and its significance for archeology and hazards. The Holocene 26(3):471–488

    Article  Google Scholar 

  • Cioni R, Funedda A (2005) Structural geology of crystal-rich, silicic flows: a case study from San Pietro Island (Sardinia, Italy). Geol Soc Am Spec Paper 396:1–14

    Google Scholar 

  • Class C, Lehnert K (2012) PetDB expert MORB (mid-ocean ridge basalt) compilation. EarthChem Library. http://dx.doi.org/10.1594/IEDA/100060

  • Connor CB (1987) Structure of the Michoacán-Guanajuato volcanic field, Mexico. J Volcanol Geoth Res 33:193–200

    Article  Google Scholar 

  • Connor CB (1990) Cinder cone clustering in the Trans-Mexican Volcanic Belt: implications for structural and petrologic models. J Geophys Res 92(B12):19395–19405

    Article  Google Scholar 

  • Cordonnier B, Schmalholz SM, Hess K-U, Dingwell DB (2012) Viscous heating in silicate melts: an experimental and numerical comparison. J Geophys Res 117:B02203

    Google Scholar 

  • Costa A, Caricchi L, Bagdassarov N (2009) A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem Geophys Geosyst 10:1525–2027

    Article  Google Scholar 

  • Decker RW, Wright TL, Stauffer PH (1987) Volcanism in Hawaii. US Geol Surv Prof Paper. 1350p

  • de Silva SL, Self S, Francis PW, Drake RE, Carlos RR (1994) Effusive silicic volcanism in the Central Andes: the Chao dacite and other young lavas of the Altiplano-Puna Volcanic Complex. J Geophys Res 99(B9):17805–17825

    Article  Google Scholar 

  • Eichelberger JC (1975) Origin of andesite and dacite: evidence of mixing at Glass Mountain in California and at other circum-Pacific volcanoes. Geol Soc Am Bull 86:1381–1391

    Article  Google Scholar 

  • Francis PW, Roobol MJ, Walker GPL, Cobbold PR, Coward M (1974) The San Pedro and San Pablo volcanoes of northern Chile and their hot avalanche deposits. Geol Rundsch 63:357–388

    Article  Google Scholar 

  • Fries C (1953) Volumes and weights of pyroclastic material, lava and water erupted by Paricutin Volcano, Michoacan, Mexico. Trans Am Geophys Union 34:603–616

    Article  Google Scholar 

  • Garcia MO, Jacobson SS (1979) Crystal clots, amphibole fractionation, and the evolution of calc-alkaline magmas. Contrib Mineral Petrol 69:319–327

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sc Lett 271:123–134

    Article  Google Scholar 

  • Gómez-Tuena A, Orozco-Esquivel MT, Ferrari L (2007) Igneous petrogenesis of the Trans-Mexican Volcanic Belt. In: Alaniz-Álvarez SA, Nieto-Samaniego AF (eds) Geology of México: celebrating the centenary of the Geological Society of México, vol 422, Geol Soc Am Spec Pap., pp 129–181

    Chapter  Google Scholar 

  • González Díaz E (1972) Descripción geológica de la Hoja 30d, Payun Matru. Direc Gen Min Geol Hidrol, Bol 130, 92p

  • Greeley R (1982) The Snake River Plain, Idaho: representative of a new category of volcanism. J Geophys Res 87(B4):2705–2712

    Article  Google Scholar 

  • Guest JE, Sanchez J (1969) A large dacitic lava flow in northern Chile. Bull Volcanol 33:778–790

    Article  Google Scholar 

  • Guest JE, Murray JB (1976) Volcanic features of the nearside equatorial lunar maria. J Geol Soc 132:251–258

    Article  Google Scholar 

  • Guest JE, Bulmer MH, Aubele J, Beratan K, Greeley R, Head JW, Michaels G, Weitz C, Wiles C (1992) Small volcanic edifices and volcanism in the plains of Venus. J Geophys Res 97(E10):15,949–15,966

    Article  Google Scholar 

  • Guilbaud M-N, Siebe C, Salinas S (2009) Excursions to Paricutin and Jorullo (Michoacán), the youngest volcanoes of the Trans-Mexican Volcanic Belt. A commemorative fieldtrip on the occasion of the 250th anniversary of Volcán Jorullo’s birthday on September 29, 1759. Impretei S.A., México, D.F

  • Guilbaud M-N, Siebe C, Layer P, Salinas S, Castro-Govea R, Garduño-Monroy VH, Le Corvec N (2011) Geology, geochronology, and tectonic setting of the Jorullo Volcano region, Michoacán, México. J Volcanol Geoth Res 201:97–112

    Article  Google Scholar 

  • Guilbaud M-N, Siebe C, Layer P, Salinas S (2012) Reconstruction of the volcanic history of the Tacámbaro-Puruarán area (Michoacán, México) reveals high frequency of Holocene monogenetic eruptions. Bull Volcanol 74:1187–1211

    Article  Google Scholar 

  • Griffiths RW, Fink JH (1993) Effects of surface cooling on the spreading of lava flows and domes. J Fluid Mech 252:661–102

    Article  Google Scholar 

  • Harris AJL, Flynn LP, Matias O, Rose WI, Cornejo J (2004) The evolution of an active silicic lava flow field: an ETM+ perspective. J Volcanol Geoth Res 135:147–168

    Article  Google Scholar 

  • Harris AJL, Rowland SK (2015) Lava flows and rheology. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes, 2nd edn. Academic, London

    Google Scholar 

  • Hasenaka T (1994) Size, distribution and magma output rates for shield volcanoes of the Michoacán-Guanajuato volcanic field, Central Mexico. J Volcanol Geoth Res 63:13–31

    Article  Google Scholar 

  • Hasenaka T, Ban M, Delgado-Granados H (1994) Contrasting volcanism in the Michoacán-Guanajuato volcanic field, central Mexico: shield volcanoes vs. cinder cones. Geofis Int 33(1):125–138

    Google Scholar 

  • Hasenaka T, Carmichael ISE (1985a) Compilation of location, size, and geomorphological parameters of volcanoes of the Michoacán-Guanajuato volcanic field, central Mexico. Geofis Int 24(4):577–607

    Google Scholar 

  • Hasenaka T, Carmichael ISE (1985b) The cinder cones of Michoacán-Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. J Volcanol Geoth Res 25:105–124

    Article  Google Scholar 

  • Hasenaka T, Carmichael ISE (1986) Metate and other shield volcanoes of the Michoacán-Guanajuato. Mexico Trans Am Geophys Union 67:44

    Google Scholar 

  • Hasenaka T, Carmichael ISE (1987) The cinder cones of Michoacán-Guanajuato, central Mexico: petrology and chemistry. J Petrol 28:241–269

    Article  Google Scholar 

  • Herrmann W, Berry RF (2002) MINSQ—a least square spreadsheet method for calculating mineral proportions from whole rock major element analyses. Geochem Explor Environ, Anal 2:361–368

    Article  Google Scholar 

  • Hildreth W (2007) Quaternary magmatism in the Cascades—geologic perspectives. USGS Professional Paper 1744. U.S. Geological Survey, Reston, Virginia, 125p.

  • Hulme G (1974) The interpretation of lava flow morphology. Geophys J Roy Astr Soc 39:361–383

    Article  Google Scholar 

  • Hulme G, Fielder G (1977) Effusion rates and rheology of lunar lavas. Philos Trans R Soc Lond S-A 285:227–234

    Article  Google Scholar 

  • Jeffreys H (1925) The flow of water in an inclined channel of rectangular section. Philosophical Magazine Series 6, 49(293): 793–807

  • Johnson ER, Wallace PJ, Granados HD, Manea VC, Kent AJ, Bindeman IN, Donegan CS (2009) Subduction-related volatile recycling and magma generation beneath central Mexico: insights from melt inclusions, oxygen isotopes and geodynamic models. J Petrol 50(9):1729–1764

    Article  Google Scholar 

  • Kerr RC, Griffiths RW, Cashman KV (2006) Formation of channelized lava flows on an unconfined slope. J Geophys Res 111:B10206

    Article  Google Scholar 

  • Kilburn CRJ (2000) Lava flows and flow fields. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, London

    Google Scholar 

  • Kilburn CRJ, Lopes R (1991) General patterns of flow field growth: Aa and blocky lavas. J Geophys Res 96(B12):19,721–19,732

    Article  Google Scholar 

  • Kim Y, Miller MS, Pearce F, Clayton RW (2012) Seismic imaging of the Cocos plate subduction zone system in central Mexico. Geochem Geophys Geosy 13(7):Q07001

    Article  Google Scholar 

  • Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. J Rheol 3:137–152

    Article  Google Scholar 

  • Laubier M, Grove TL, Langmuir CH (2014) Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: an experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth Planet Sci Lett 392:265–278

    Article  Google Scholar 

  • Lavallée Y, Hess K-U, Cordonnier B, Dingwell DB (2007) Non-Newtonian rheological law for highly crystalline dome lavas. Geology 35:843–846

    Article  Google Scholar 

  • LeBas MJ, Lemaitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali silica diagram. J Petrol 27(3):745–750

    Article  Google Scholar 

  • Lefler E (2011) Genauigkeitsbetrachtung bei der Ermittlung rheologischer Parameter von Lavaströmen aus Fernerkundungsdaten. Freie Universität Berlin, Berlin, B.Sc. thesis, 75p

    Google Scholar 

  • Losantos E, Cebriá JM, Morán-Zenteno DJ, Martiny BM, López-Ruiz J (2014) Condiciones de cristalización y diferenciación de las lavas del volcán El Metate (Campo Volcánico de Michoacán-Guanajuato, México). Estud Geol-Madrid 70(2):e020

    Article  Google Scholar 

  • Manga M, Castro J, Cashman KV, Loewenberg M (1998) Rheology of bubble-bearing magmas. J Volcanol Geoth Res 87:15–28

    Article  Google Scholar 

  • McDonough WF, Sun SS, Ringwood AE, Jagoutz E, Hofmann AW (1992) Potassium, rubidium, and cesium in the earth and moon and the evolution of the Earth’s mantle. Geochim Cosmochim Acta 56(3):1001–1012

    Article  Google Scholar 

  • Mueller S, Llewellin EW, Mader HM (2010) The rheology of suspensions of solid particles. Trans R Soc Lond S-A 466:1201–1228

    Article  Google Scholar 

  • Naranjo JA, Sparks RSJ, Stasiuk MV, Moreno H, Ablay GJ (1992) Morphological, structural and textural variations in the 1988–1990 andesite lava of Lonquimay Volcano, Chile. Geol Mag 129(6):657–678

    Article  Google Scholar 

  • Nichols RL (1939) Viscosity of lava. J Geol 47:290–302

    Article  Google Scholar 

  • Ortega-Gutiérrez F, Elías-Herrera M, Dávalos-Elizondo MG (2008) On the nature and role of the lower crust in the volcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region, southern and central Mexico. Revista Mexicana de Ciencias Geológicas 25(2):346–364

    Google Scholar 

  • Ownby SE, Delgado-Granados H, Lange RA, Hall CM (2007) Volcán Tancítaro, Michoacán, México. 40Ar/39Ar constraints on its history of sector collapse. J Volcanol Geoth Res 161:1–14

    Article  Google Scholar 

  • Ownby SE, Lange RA, Hall CM, Delgado-Granados H (2011) Origin of andesite in the deep crust and eruption rates in the Tancítaro-Nueva Italia region of the central Mexican arc. Geol Soc Amer Bull 123(1–2):274–294

    Article  Google Scholar 

  • Pardo M, Suárez G (1995) Shape of the subducted Rivera and Cocos plates in southern Mexico: seismic and tectonic implications. J Geophys Res 100(B7):12,357–12,373

    Article  Google Scholar 

  • Pinkerton H, Sparks RSJ (1976) The 1975 sub-terminal lavas, Mount Etna: a case history of the formation of a compound lava field. J Volcanol Geoth Res 1:167–182

    Article  Google Scholar 

  • Pinkerton H, Wilson L (1994) Factors controlling the lengths of channel-fed lava flows. J Volcanol Geoth Res 56:108–120

    Google Scholar 

  • Pioli L, Erlund E, Johnson ER, Cashman KV, Wallace PJ, Rosi M, Delgado H (2008) Explosive dynamics of violent Strombolian eruptions: the eruption of Paricutin Volcano 1943–1952 (Mexico). Earth Planet Sci Lett 271:359–368

    Article  Google Scholar 

  • Pola A, Macías JL, Garduño-Monroy VH, Osorio-Ocampo S, Cardona-Melchor S (2014) Successive collapses of the El Estribo volcanic complex in the Pátzcuaro Lake, Michoacán, Mexico. J Volcanol Geoth Res 289:41–50

    Article  Google Scholar 

  • Prowatke S, Klemme S (2006) Trace element partitioning between apatite and silicate melts. Geochim Cosmochim Acta 70(17):4513–4527

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Article  Google Scholar 

  • Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, London

    Google Scholar 

  • Ridolfi F, Renzulli A, Pueriniet M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160:45–66

    Article  Google Scholar 

  • Roggensack K (1992) Petrology and geochemistry of shield volcanoes in the central Mexican Volcanic Belt. PhD thesis. Dartmouth College, NH, USA, 173p

  • Rossi MJ (1996) Morphology and mechanism of eruption of postglacial shield volcanoes in Iceland. Bull Volcanol 57:530–540

    Article  Google Scholar 

  • Rust AC, Manga M (2002) Effects of bubble deformation on the viscosity of dilute suspensions. J Non-Newtonian Fluid Mech 104:53–63

    Article  Google Scholar 

  • Rutherford MJ, Devine JD (2003) Magmatic conditions and magma ascent rate as indicated by hornblende phase equilibria and reaction in the 1995–2002 Soufrière Hills magma. J Petrol 44:1433–1454

    Article  Google Scholar 

  • Rutherford MJ, Gardner JE (2000) Rate of magma ascent. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, London

    Google Scholar 

  • Rutherford MJ, Hill PM (1993) Magma ascent rates from amphibole breakdown: experiments and the 1980–1986 Mount St. Helens eruptions. J Geophys Res 98:19,667–19,685

    Article  Google Scholar 

  • Schaaf P, Stimac J, Siebe C, Macías JL (2005) Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatépetl and surrounding monogenetic volcanoes, central Mexico. J Petrol 46:1243–1282

    Article  Google Scholar 

  • Siebe C, Guilbaud M-N, Salinas S, Kshirsagar P, Chevrel MO, de la Fuente JR, Hernández-Jiménez A, Godínez L (2014) Monogenetic volcanism of the Michoacán-Guanajuato Volcanic Field: Maar craters of the Zacapu basin and domes, shields, and scoria cones of the Tarascan highlands (Paracho-Paricutin region). Fieldguide, pre-meeting fieldtrip (Nov. 13–17) for the 5th International Maar Conference (5IMC-IAVCEI), Querétaro, México

  • Sieron K, Siebe C (2008) Revised stratigraphy and eruption rates of Ceboruco stratovolcano and surrounding monogenetic vents (Nayarit, Mexico) from historical documents and new radiocarbon dates. J Volcanol Geoth Res 176:241–264

    Article  Google Scholar 

  • Sisson TW (1994) Hornblende-melt trace-element partitioning measured by ion microprobe. Chem Geol 117(1):331–344

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, vol 42, Geological Society Special Publication., pp 313–345

    Google Scholar 

  • Tepley FJ III, Lundstrom CC, McDonough WF, Thompson A (2010) Trace element partitioning between high-An plagioclase and basaltic to basaltic andesite melt at 1 atmosphere pressure. Lithos 118:82–94

    Article  Google Scholar 

  • Tiepolo M, Oberti R, Zanetti A, Vannuci R, Foley S (2007) Trace-element partitioning between amphibole and silicate melt. Rev Mineral Geochem 67:417–425

    Article  Google Scholar 

  • Tuffen H, James MR, Castro JM, Schipper CI (2013) Exceptional mobility of an advancing rhyolitic obsidian flow at Cordón Caulle volcano in Chile. Nature Communication 4:2709

    Article  Google Scholar 

  • Valentine GA, Connor CB (2015) Basaltic volcanic fields. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes, 2nd edn. Academic, London, pp 423–439

    Chapter  Google Scholar 

  • Verma SP (2000) Geochemistry of the subducting Cocos plate and the origin of subduction-unrelated mafic volcanic at the volcanic front of the central Mexican Volcanic Belt. In: Delgado H, Aguirre-Díaz G, Stock JM (eds) Cenozoic tectonics and volcanism of Mexico, vol 334, Geol Soc Am Spec Paper, pp 195–222

    Chapter  Google Scholar 

  • Wadge G, Lopes RMC (1991) The lobes of lava flows on Earth and Olympus Mons, Mars. Bull Volcanol 54:10–24

    Article  Google Scholar 

  • Walker GPL (1973) Lengths of lava flows. Philos Trans R Soc Lond 274:107–118

    Article  Google Scholar 

  • Waters LE, Lange RA (2015) An updated calibration of the plagioclase-liquid hygrometer-thermometer applicable to basalts through rhyolites. Am Min 100:2172–2184

    Article  Google Scholar 

  • Whitford-Stark JL (1975) Shield volcanoes. In: Fielder G, Wilson L (eds) Volcanoes of the Earth, Moon and Mars. St. Martins, New York

    Google Scholar 

  • Williams H (1950) Volcanoes of the Paricutin region, México: geologic investigations in the Paricutin area, México. US Geol Surv Bull 965-B:165–279

    Google Scholar 

  • Wilson L, Head JW (1983) A comparison of volcanic eruption processes on Earth, Moon, Mars, Io and Venus. Nature 302:663–669

    Article  Google Scholar 

Download references

Acknowledgments

Field and laboratory costs were defrayed from projects funded by the Consejo Nacional de Ciencia y Tecnología (CONACyT-167231 and 152294) and the Dirección General de Asuntos del Personal Académico UNAM-DGAPA IN-101915 and 105615 granted to C. Siebe and M.-N. Guilbaud. M.O. Chevrel was funded by a UNAM-DGAPA postdoctoral fellowship (2014–2016). Peter Schaaf, Teodoro Hernández Treviño, Gabriela Solís-Pichardo, and Gerardo Arrieta supervised the isotopic analyses at LUGIS, and Carlos Linares López helped with the microprobe analyses at UNAM. We thank K. Putirka, F. Ridolfi, L. Waters, and R. Lange for allowing free access of Excel spreadsheets used for thermobarometry calculations and Fraser Goff for constructive discussion and comments on the manuscript. Sergio Salinas and Juan Ramón de la Fuente (UNAM) and Nicolás Vidales and his family from the Purépecha town of Turícuaro were helpful during fieldwork. We thank Hannah Dietterich, Dawnika Blatter, and an anonymous reviewer for their constructive comments and valuable suggestions as well as Paul Wallace for his comments and editorial handling of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Oryaëlle Chevrel.

Additional information

Editorial responsibility: P. Wallace

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

Supplementary material describing details of the thermobarometry and hygrometry calculations. (PDF 3.86 mb)

Online resource 2

Supplementary material describing details of the two methods applied to calculate the rheological properties and flow emplacement duration (petrological and morphological approaches). (PDF 2.77 mb)

Online resource 3

Recalculated chemical composition of the residual liquid after crystallization of phenocrysts and microphenocrysts. (PDF 59.2 kb)

Online resource 4

Magma and lava viscosity, for pre- and syn-eruption conditions, calculated by the petrological approach that accounts for the recalculated chemical composition of the residual liquid and crystal volume (%) (PDF 55.2 kb)

Online resource 5

Parameters used for fractional crystallization modeling and results. (PDF 90.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chevrel, M.O., Guilbaud, MN. & Siebe, C. The ∼AD 1250 effusive eruption of El Metate shield volcano (Michoacán, Mexico): magma source, crustal storage, eruptive dynamics, and lava rheology. Bull Volcanol 78, 32 (2016). https://doi.org/10.1007/s00445-016-1020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1020-9

Keywords

Navigation