Skip to main content
Log in

Xenopumice erupted on 15 October 2011 offshore of El Hierro (Canary Islands): a subvolcanic snapshot of magmatic, hydrothermal and pyrometamorphic processes

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

On 15 October 2011, a submarine eruption offshore of El Hierro Island gave rise to floating volcanic products, known as xenopumices, i.e., pumiceous xenoliths partly mingled and coated with the juvenile basanitic magma. Over the last few years, no consensus in the scientific community in explaining the origin of these products has been reached. In order to better understand the formation of xenopumice, we present a textural, mineralogical, and geochemical study of the possible magmatic, hydrothermal, and pyrometamorphic processes, which usually operate in the plumbing systems of active volcanoes. We carried out a comprehensive SEM investigation and Sr-Nd-Pb isotope analyses on some samples representative of three different xenopumice facies. All the data were compared with previous studies, new data for El Hierro extrusives and a literature dataset of Canary Islands igneous and sedimentary rocks. In the investigated xenopumices, we emphasize the presence of restitic magmatic phases as well as crystallization of minerals (mainly olivine + pyroxene + magnetite aggregates) as pseudomorphs after pre-existing mafic phenocrysts, providing evidence of pyrometamorphism induced by the high-T juvenile basanitic magma. In addition, we identify veins consisting of zircon + REE-oxides + mullite associated with Si-rich glass and hydrothermal quartz, which indicate the fundamental role played by hydrothermal fluid circulation in the xenopumice protolith. The petrological data agree with a pre-syneruptive formation of the xenopumice, when El Hierro basanite magma intruded hydrothermally altered trachyandesite to trachyte rocks and triggered local partial melting. Therefore, the El Hierro xenopumice represents a snapshot of the transient processes at the magma-wall rock interface, which normally occurs in the feeding system of active volcanoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abouchami W, Galer SJG, Koschinsky A (1999) Pb and Nd isotopes in NE Atlantic Fe-Mn crusts: proxies for trace metal paleosources and paleocean circulation. Geochim Cosmochim Acta 63:1489–1505. doi:10.1016/S0016-7037(99)00068-X

    Article  Google Scholar 

  • Abratis M, Schmincke H-U, Hansteen T (2002) Composition and evolution of submarine volcanic rocks from the central and western Canary Islands. Int J Earth Sci 91:562–582. doi:10.1007/s00531-002-0286-7

    Article  Google Scholar 

  • Acosta J, Uchupi E, Smith D, Munoz A, Herranz P, Palomo C, Llanes P, Ballesteros M, Group ZW (2003) Comparison of volcanic rifts on La Palma and El Hierro, Canary Islands and the Island of Hawaii. Mar Geophys Res 24:59–90. doi:10.1007/s11001-004-1162-6

    Article  Google Scholar 

  • Archibald SM, Migdisov AA, Williams-Jones AE (2001) The stability of Au-chloride complexes in water vapor at elevated temperatures and pressures. Geochim Cosmochim Acta 65:4413–4423. doi:10.1016/S0016-7037(01)00730-X

    Article  Google Scholar 

  • Avanzinelli R, Boari E, Conticelli S, Francalanci L, Guarnieri L, Perini G, Petrone CM, Tommasini S, Ulivi M (2005) High precision Sr, Nd, and Pb isotopic analyses using the new generation Thermal Ionisation Mass Spectrometer ThermoFinnigan Triton-Ti®. Per Miner 74:147–166

    Google Scholar 

  • Bowen NL (1928) The evolution of the igneous rocks. Princeton University Press, Princeton

    Google Scholar 

  • Bowen NL, Tuttle OF (1950) The system NaAlSi3O8–KAlSi3O8–H2O. J Geol 58:489–511

    Article  Google Scholar 

  • Carracedo JC, Badiola ER, Guillou H, De La Nuez J, Pérez Torrado FJ (2001) Geology and volcanology of La Palma and El Hierro, Western Canaries. Estud Geologicos 57:175–273

    Google Scholar 

  • Carracedo JC, Pérez Torrado F, Rodríquez González A, Soler V, Fernández Turiel JL, Troll VR, Wiesmaier S (2012) The 2011 submarine volcanic eruption in El Hierro (Canary Islands). Geol Today 28:53–58. doi:10.1111/j.1365-2451.2012.00827.x

    Article  Google Scholar 

  • Clark BH, Peacor DR (1992) Pyrometamorphism and partial melting of shales during combustion metamorphism: mineralogical, textural, and chemical effects. Contrib Mineral Petrol 112:558–568. doi:10.1007/BF00310784

    Article  Google Scholar 

  • Cole JM, Goldstein SL, deMenocal PB, Hemming SR, Grousset FE (2009) Contrasting compositions of Sahara dust of eastern Atlantic Ocean during the last deglaciation and African Humid Period. Earth Plan Sci Lett 278:257–266. doi:10.1016/j.epsl.2008.12.011

    Article  Google Scholar 

  • Cosca MA, Essene EJ, Geissman JW, Simmons WB, Coates DA (1989) Pyrometamorphic rocks associated with naturally burned coal beds, Powder River Basin, Wyoming. Am Min 74:85–100

    Google Scholar 

  • Cousens BL, Spera FJ, Dobson PF (1993) Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Island: strontium, neodymium, lead and oxygen isotopic evidence. Geochim Cosmochim Acta 57:631–640. doi:10.1016/0016-7037(93)90374-6

    Article  Google Scholar 

  • Day JMD, Pearson DG, Macpherson CG, Lowry D, Carracedo JC (2010) Evidence for distinct proportions of subducted oceanic crust and lithosphere in HIMU-type mantle beneath El Hierro and La Palma, Canary Islands. Geochim Cosmochim Acta 74:6565–6589. doi:10.1016/j.gca.2010.08.021

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1997a) Rock forming minerals, Volume 2B, double chain silicates, 2nd edn. The Geological Society, London

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1997b) Rock forming minerals, Volume 2A, single chain silicates, 2nd edn. The Geological Society, London

    Google Scholar 

  • Del Moro S, Renzulli A, Tribaudino M (2011) Pyrometamorphic processes at the magma-hydrothermal system interface of active volcanoes: evidence from buchite ejecta of Stromboli (Aeolian Islands, Italy). J Petrol 52:541–564. doi:10.1093/petrology/egq090

    Article  Google Scholar 

  • Del Moro S, Renzulli A, Landi P, La Felice S, Rosi M (2013) Unusual lapilli tuff ejecta erupted at Stromboli during the 15 March 2007 explosion shed light on the nature and thermal state of rocks forming the crater system of the volcano. J Volcanol Geotherm Res 254:37–52. doi:10.1016/j.jvolgeores.2012.12.017

    Article  Google Scholar 

  • Domínguez Cerdeña I, del Fresno C, Gomis Moreno A (2014) Seismicity patterns prior to the 2011 El Hierro eruption. B Seismol Soc Am. doi:10.1785/0120130200

    Google Scholar 

  • Fulignati P, Gioncada A, Sbrana A (1998) Geologic model of the magmatic–hydrothermal system of Vulcano (Aeolian islands, Italy). Mineral Petrol 62:195–222. doi:10.1007/BF01178029

    Article  Google Scholar 

  • Fulignati P, Gioncada A, Sbrana A (1999) Rare-earth element (REE) behaviour in the alteration facies of the active magmatic - hydrothermal system of Vulcano (Aeolian Island, Italy). J Volcanol Geotherm Res 88:325–342. doi:10.1016/S0377-0273(98)00117-6

    Article  Google Scholar 

  • Fuster JM (1993) Geochronología de la Isla de El Hierro (Islas Canarias). Bol R Soc Esp Hist Nat (Sec Geol) 88(1-4):85–97

    Google Scholar 

  • García A, Fernández-Ros A, Berrocoso M, Marrero JM, Prates G, De la Cruz-Reyna S, Ortiz R (2014) Magma displacements under insular volcanic fields, applications to eruption forecasting: El Hierro, Canary Island, 2011-2013. Geophys J Int 197:322–334. doi:10.1093/gji/ggt505

    Article  Google Scholar 

  • Gee LL, Sack RO (1988) Experimental petrology of melilite nephelinites. J Petrol 29:1233–1255

    Article  Google Scholar 

  • Geldmacher J, Hoernle K, Hanan BB, Blichert-Toft J, Hauff F, Gill JB, Schmincke H-U (2011) Hafnium isotopic variations in East Atlantic intraplate volcanism. Contrib Mineral Petrol 162:21–36. doi:10.1007/s00410-010-0580-5

    Article  Google Scholar 

  • Glodny J, Grauert B (2009) Evolution of a hydrothermal fluid-rock interaction system as recorded by Sr isotopes: a case of study from the Schwarzwlad, SW Germany. Mineral Petrol 95:163–178. doi:10.1007/s00710-008-0034-1

    Article  Google Scholar 

  • Gorbatikov AV, Montesinos FG, Arnoso J, Yu Stepanova M, Benavent M, Tsukanow AA (2013) New features in the subsurface structure model of El Hierro Island (Canaries) from low-frequency microseismic sounding: an insight into the 2011seismo-volcanic crisis. Surv Geophys 34:463–489. doi:10.1007/s10712-013-9240-4

    Article  Google Scholar 

  • Graham IJ, Grapes RH, Kifle K (1988) Buchitic metagreywacke xenoliths from Mount Ngauruhoe, Taupo volcanic zone, New Zealand. J Volcanol Geotherm Res 35:205–216. doi:10.1016/0377-0273(88)90017-0

    Article  Google Scholar 

  • Grapes RH (1986) Melting and thermal reconstitution of pelitic xenoliths, Wehr volcano, East Eifel, Germany. J Petrol 27:343–396. doi:10.1093/petrology/27.2.343

    Article  Google Scholar 

  • Grapes RH (2006) Pyrometamorphism. Springer, Berlin

    Google Scholar 

  • Guillou H, Carracedo JC, Pérez Torrado FJ, Badiola ER (1996) K–Ar ages and magnetic stratigraphy of a hotspot-induced, fast grown oceanic island: El Hierro, Canary Islands. J Volcanol Geotherm Res 73:141–155. doi:10.1016/0377-0273(96)00021-2

    Article  Google Scholar 

  • Gurenko AA, Hoernle KA, Hauff F, Schmincke H-U, Han D, Miura YN, Kaneoka I (2006) Major, trace element and Nd–Sr–Pb–O–He–Ar isotope signatures of shield stage lavas from the central and western Canary Islands: insights into mantle and crustal processes. Chem Geol 233:75–112. doi:10.1016/j.chemgeo.2006.02.016

    Article  Google Scholar 

  • Gurenko AA, Sobolev AV, Hoernle KA, Hauff F, Schmincke H-U (2009) Enriched, HIMU-type peridotite and depleted recycled pyroxenite in the Canary plume: a mixed-up mantle. Earth Planet Sci Lett 277:514–524

    Article  Google Scholar 

  • Gysi AP, Williams-Jones AE (2013) Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada: a reaction path model. Geochim Cosmochim Acta 122:324–352. doi:10.1016/j.gca.2013.08.031

    Article  Google Scholar 

  • Haas JR, Shock EL, Sassani DC (1995) Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexesof the rare earth elements at high pressures and temperatures. Geochim Cosmochim Acta 59:4329–4350. doi:10.1016/0016-7037(95)00314-P

    Article  Google Scholar 

  • Harlov D, Renzulli A, Ridolfi F (2006) Iron-bearing chlor-fluorapatites in crustal xenoliths from the Stromboli volcano (Aeolian Islands, southern Italy): an indicator of fluid processes during contact metamorphism. Eur J Mineral 18:233–241. doi:10.1127/0935-1221/2006/0018-0233

    Article  Google Scholar 

  • Hoernle K (1998) Geochemistry of Jurassic ocean crust beneath Gran Canaria (Canary Islands): implications for crustal recycling and assimilation. J Petrol 39:859–880. doi:10.1093/petroj/39.5.859

    Article  Google Scholar 

  • Jugo PJ (2009) Sulfur content at sulfide saturation in oxidized magmas. Geology 37:415–418. doi:10.1130/G25527A.1

    Article  Google Scholar 

  • Kitchen D (1984) Pyrometamorphism and the contamination of basaltic magma at Tieveragh. Co Antrim J Geol Soc Lond 141:733–745. doi:10.1144/gsjgs.141.4.0733

    Article  Google Scholar 

  • Klügel A, Hansteen TH, van den Bogaard P, Strauss H, Hauff F (2011) Holocene fluid venting at an extint Cretaceous seamount, Canary archipelago. Geology 39:855–858. doi:10.1130/G32006.1

    Article  Google Scholar 

  • Krastel S, Schmincke H-U (2002) Crustal structure of northern Gran Canaria, Canary Islands, deduced from active seismic tomography. J Volcanol Geotherm Res 115:153–177. doi:10.1016/S0377-0273(01)00313-4

    Article  Google Scholar 

  • Kuznetsov AB, Semikhatov MA, Gorokhov IM (2012) The Sr isotope composition of the world ocean, marginal inland seas: implication for the Sr isotope stratigraphy. Stratigr Geol Correl 20:501–515. doi:10.1134/S0869593812060044

    Article  Google Scholar 

  • Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms. Blackwell, Oxford

    Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino J, Maresch WV, Nickel EH, Schumaker JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Can Mineral 35:219–246

    Google Scholar 

  • Longpré MA, Klügel A, Diehl A, Stix J (2014) Mixing in mantle reservoirs prior to and during the 2011-2012 eruption at El Hierro, Canary Island. Geology 42:315–318. doi:10.1130/G35165.1

    Article  Google Scholar 

  • López C et al (2012) Monitoring the unrest of El Hierro (Canary Islands) before the onset of the 2011 submarine eruption. Geophys Res Lett 39, L13303. doi:10.1029/2012GL051846

    Google Scholar 

  • Manzies M, Seyfried WE (1979) Basalt-seawater interaction trace element and strontium isotopic variations in experimentally altered glassy basalt. Earth Planet Sci Lett 44:463–472. doi:10.1016/0012-821X(79)90084-0

    Article  Google Scholar 

  • Martí J, Castro A, Rodríguez C, Costa F, Carrasquilla S, Pedreira R, Bolos X (2013a) Correlation of magma evolution and geophysical monitoring during the 2011-2012 El Hierro (Canary Islands) submarine eruption. J Petrol 54:1349–1373. doi:10.1093/petrology/egt014

    Article  Google Scholar 

  • Martí J, Pinel V, López C, Geyer A, Abella R, Tárraga M, Blanco MJ, Castro A, Rodríquez C (2013b) Causes and mechanisms of the 2011-2012 El Hierro (Canary Islands) submarine eruption. J Geophys Res: Solid Earth 118:823–839. doi:10.1002/jgrb.50087

    Article  Google Scholar 

  • Meletlidis S, Di Roberto A, Pompilio M, Bertagnini A, Iribarren I, Felpeto A, Torres PA, D’Oriano C (2012) Xenopumices from the 2011-2012 submarine eruption of El Hierro (Canary Islands, Spain): Contraints on the plumbing system and magma ascent. Geophys Res Lett 39. doi: 10.1029/2012GL052675

  • Migdisov AA, Williams-Jones AE, Wagner T (2009) An experimental study of the solubility and speciation of the Rare Earth Elements (III) in fluoride- and chloride- bearing aqueous solutions at temperatures up to 300 °C. Geochim Cosmochim Acta 73:7087–7109. doi:10.1016/j.gca.2009.08.023

    Article  Google Scholar 

  • Nakamura N (1974) Determination of REE, Ba, Fe, Mg, Na and K in Carbonaceous and ordinary chondrites. Geochim Cosmochim Acta 38:757–775. doi:10.1016/0016-7037(74)90149-5

    Article  Google Scholar 

  • Neumann ER, Sørensen V, Simonsen SL, Johnsen K (2000) Gabbroic xenoliths from La Palma, Tenerife and Lanzarote, Canary Islands: evidence for reactions between Canary Islands melts and old oceanic crust. J Volcanol Geother Res 103:313–342. doi:10.1016/S0377-0273(00)00229-8

    Article  Google Scholar 

  • Nobre Silva IG, Weis D, Scoates JS (2010) Effects of acid leaching on the Sr-Nd-Hf isotopic compositions of ocean island basalts. Geochim Geophys Geosyst 11.doi:10.1029/2010GC003176

  • Ovchinnikova GV, Belyatskii BV, Vasil’eva IM, Levskii LK, Grachev AF, Arana V, Mithavila J (1995) Sr–Nd–Pb isotope characteristics of the mantle sources of basalts from the Canary Islands. Petrology 3:172–182

    Google Scholar 

  • Pedrazzi D, Becerril L, Martí J, Meletlidis S, Galindo I (2014) Explosive felsic volcanism on El Hierro (Canary Islands). Bull Volcanol 76:1–19

    Article  Google Scholar 

  • Pellicer MJ (1979) Geochemical study of volcanism on Hierro, Canary Islands. Estud Geologicos 35:15–29

    Google Scholar 

  • Pellicer MJ (1980) Comportamiento de los elementos menores y modelo de fusión parcial para las lavas de la isla de Hierro, (A. Canario). Bol R Soc Esp Hist Nat 78:175–189

    Google Scholar 

  • Pirajno F (2009) Hydrothermal processes and mineral systems. Springer, Perth

    Book  Google Scholar 

  • Praegel NO, Holm PM (2006) Lithospheric contributions to high-MgO basanites from the Cumbre Vieja volcano, La Palma, Canary Islands and evidence for temporal variation in plume influence. J Volcanol Geotherm Res 149:213–239. doi:10.1016/j.jvolgeores.2005.07.019

    Article  Google Scholar 

  • Preston RJ, Dempster TJ, Bell BR, Rogers G (1999) The petrology of mullite-bearing peraluminous xenoliths: implications for contamination processes in basaltic magmas. J Petrol 40:549–573. doi:10.1093/petroj/40.4.549

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Min Geochem 69:61–120. doi:10.2138/rmg.2008.69.3

    Article  Google Scholar 

  • Rathossi C, Pontikes Y (2010) Effect of firing temperature and atmosphere on ceramics made of NW Peloponnese clay sediments. Part I: Reaction paths, crystalline phases, microstructure and colour. J Eur Ceram Soc 30:1841–1851. doi:10.1016/j.jeurceramsoc.2010.02.003

    Article  Google Scholar 

  • Renzulli A, Tribaudino M, Salvioli-Mariani E, Serri G, Holm PM (2003) Cordierite-anorthoclase hornfels xenoliths in Stromboli lavas (Aeolian Islands, Sicily) an example of a fast cooled contact aureole. Eur J Mineral 15:665–679. doi:10.1127/0935-1221/2003/0015-0665

    Article  Google Scholar 

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160:45–66

    Article  Google Scholar 

  • Rivera J, Lastras G, Canals M, Acosta J, Arrese B, Herrnida N, Micallef A, Tello O, Amblas D (2013) Construction of an oceanic island: insights from the El Hierro (Canary Islands). Geology. doi:10.1130/G33863.1

    Google Scholar 

  • Robb L (2005) Introduction to ore-forming processes. Blackwell Publishing

  • Rodriguez-Losada JA, Eff-Darwich A, Hernandez LE, Viñas R, Pérez N, Hernandez P, Melián G, Martinez-Frías J, Carmen Romero-Ruiz M, Coello-Bravo JJ (2014) Petrological and geochemical highlights in the floating fragments of the October 2011 submarine eruption offshore El Hierro (Canary Islands): Relevance of submarine hydrothermal processes. J Afric Earth Sci. doi:10.1016/j.jafrearsci.2014.11.005

    Google Scholar 

  • Salvi S, Williams-Jones AE (1996) The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada. Geochim Cosmochim Acta 60:1917–1932. doi:10.1016/0016-7037(96)00071-3

    Article  Google Scholar 

  • Salvi S, Fontan F, Monchoux P, Williams-Jones AE, Moine B (2000) Hydrothermal mobilization of high field strength elements in alkaline igneous systems: Evidence from the Tamazeght complex (Morocco). Econ Geol 95:559–576. doi:10.2113/95.3.559

    Google Scholar 

  • Salvioli-Mariani E, Renzulli A, Serri G, Holm PM, Toscani L (2005) Glass-bearing crustal xenoliths (buchites) erupted during recent activity of Stromboli (Aeolian Islands). Lithos 81:255–277. doi:10.1016/j.lithos.2004.12.001

    Article  Google Scholar 

  • Sato H (1975) Diffusion coronas around quartz xenocrysts in andesite and basalt from the Tertiary Volcanic Region in northeastern Shikoku, Japan. Contrib Mineral Petrol 50:49–64. doi:10.1007/BF00385221

    Article  Google Scholar 

  • Schmincke H-U, Sumita M (1998) Volcanic evolution of Gran Canaria reconstructed from apron sediments: synthesis of VICAP project drilling. In: Weaver Philip PE, Schmincke Hans U, Firth John V, Duffield W (eds) Proceedings ocean drilling program, Scientific Results, vol 157, pp 443–469

  • Schomburg J (1991) Thermal reactions of clay minerals: their significance as “archeological thermometers” in incipient potteries. App Clay Sci 6:215–220

    Article  Google Scholar 

  • Searle EJ (1962) Xenoliths and metamorphosed rocks associated with the Auckland basalts. N Z J Geol Geophys 5:384–403. doi:10.1080/00288306.1962.10420095

    Article  Google Scholar 

  • Sigmarsson O, Laporte D, Carpentier M, Devouard B, Devidal JL, Marti J (2013) Formation of U-depleted rhyolite from basanite at El Hierro, Canary Islands. Contrib Mineral Petrol 165:601–622. doi:10.1007/s00410-012-0826-5

    Article  Google Scholar 

  • Sokol E, Volcova N, Lepezin G (1998) Mineralogy of pyrometamorphic rocks associated with naturally burned coal-bearing spoil-heaps of the Chelyabinsk coal basin, Russia. Eur J Mineral 10:1003–1014. doi:10.1127/ejm/10/5/1003#_blank

    Article  Google Scholar 

  • Spooner ETC, Chapman HJ, Smewing JD (1977) Strontium isotopic contamination and oxidation during ocean floor hydrothermal metamorphism of the ophiolitic rocks of the Troodos Massif, Cyprus. Geochim Cosmochim Acta 41:873–890. doi:10.1016/0016-7037(77)90147-8

    Article  Google Scholar 

  • Staudigel H, Schmincke HU (1984) The Pliocene seamount series of La Palma/Canary Islands. J Geophys Res Solid Earth 89:11195–11215. doi:10.1029/JB089iB13p11195

    Article  Google Scholar 

  • Stroncik NA, Klügel A, Hansteen TH (2009) The magmatic plumbing system beneath El Hierro (Canary Islands): constraints from phenocrysts and naturally quenched basaltic glasses in submarine rocks. Contrib Mineral Petrol 157:593–607. doi:10.1007/s00410-008-0354-5

    Article  Google Scholar 

  • Thompson RN, Morrison MA, Hendry GL, Parry SJ (1984) An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach. Philos Trans R Soc Lond A3(10):549–590. doi:10.1098/rsta.1984.0008

    Article  Google Scholar 

  • Todt W, Cliff RA, Hanser A, Hofmann AW (1993) Re-calibration of NBS lead standards using a 202Pb-205Pb double spike. Terra Abstracts supplement 1 to Terra Nov. 5 (1): 396

  • Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149:22–39. doi:10.1007/s00410-004-0629-4

    Article  Google Scholar 

  • Troll VR, Schmincke HU (2002) Magma mixing and crustal recycling recorded in ternary feldspar from compositionally zoned peralkaline ignimbrite ‘A’, Gran Canaria, Canary Islands. J Petrol 43:243–270. doi:10.1093/petrology/43.2.243

    Article  Google Scholar 

  • Troll VR, Klügel A, Longpré MA et al (2012) Floating stones off El Hierro, Canary Islands: xenoliths of pre-island sedimentary origin in the early products of the October 2011 eruption. Solid Earth 3:97–110. doi:10.5194/se-3-97-2012

    Article  Google Scholar 

  • Verma SP (1992) Seawater alteration effects on REE, K, Rb, Cs, Sr, U, Th, Pb and Sr-Nd-Pb isotope systematics of Mid-Ocean Ridge Basalt. Geochem J 26:159–177

    Article  Google Scholar 

  • Waldron KA, Droop GTR, Champness PE (1993) Kinetic controls on the formation of metastable phases during experimentally induced breakdown of chlorite. Mineral Mag 57:141–156. doi:10.1180/minmag.1993.057.386.14

    Article  Google Scholar 

  • Wohletz K, Heiken G (1992) Volcanology and Geothermal energy. University of California Press, Berkeley

    Google Scholar 

  • Wood SA (1990) The aqueous geochemistry of the rare earth elements and yttrium: 2. Theoretical prediction of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure. Chem Geol 88:99–125. doi:10.1016/0009-2541(90)90106-H

    Article  Google Scholar 

  • Wood CP (1994) Mineralogy at the magma-hydrothermal system interface in andesite volcanoes, New Zealand. Geology 22:75–78

    Article  Google Scholar 

  • Wood CP, Browne PRL (1996) Chlorine-rich pyrometamorphic magma at White Island volcano, New Zealand. J Volcanol Geotherm Res 72:21–35. doi:10.1016/0377-0273(95)00085-2

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by INGV-Pisa and Dipartimento di Scienze della Terra, della Vita e dell’ Ambiente of the University of Urbino (A. Renzulli). We are grateful to B. Scaillet for his comments and suggestions of an early version of the manuscript. We also would like to thank R.H. Grapes and an anonymous referee for their critical review of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Renzulli.

Additional information

Editorial responsibility: J.E. Gardner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Moro, S., Di Roberto, A., Meletlidis, S. et al. Xenopumice erupted on 15 October 2011 offshore of El Hierro (Canary Islands): a subvolcanic snapshot of magmatic, hydrothermal and pyrometamorphic processes. Bull Volcanol 77, 53 (2015). https://doi.org/10.1007/s00445-015-0940-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-015-0940-0

Keywords

Navigation