Skip to main content
Log in

Caldera subsidence in extensional tectonics

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

We consider here the effect of extensional tectonics on the dynamics of large calderas. Active calderas are generally characterised by different periods of uplift and subsidence, in some cases spaced out by eruptions. Understanding of mechanisms which produces caldera uplift/subsidence is one of the main topics of volcanological research but is still a matter of debate. Using a simple conceptual model, we show analytically that the tectonic extension and its rate can produce the condition for the subsidence, in early stage, which in turn can also yield the magma migration (uplift) and, eventually, eruption. This work provides a possible hypothesis for caldera dynamic, which initiates due to chamber depressurisation and evolves towards potential conditions for magma re-mobilization as a consequence of tectonic loading. The conceptual model is also applied to the Campi Flegrei caldera (Italy), showing that the observed subsidence may be a result of extensional processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acocella V (2007) Understanding caldera structure and development; an overview of analog models compared to natural calderas. Earth Sci Rev 85:125–160

    Article  Google Scholar 

  • Acocella V, Cifelli F, Funiciello R (2000) Analogue models of collapse calderas and resurgent domes. J Volcan Geoth Res 104:81–96

    Article  Google Scholar 

  • Acocella V, Korme T, Salvini F, Funiciello R (2003) Elliptic calderas in Ethiopian rift: control of pre-existing structure. J Volcan Geoth Res 199:189–203

    Article  Google Scholar 

  • Amadei B, Stephenson O (1997) Rock stress and its measurement. Chapman and Hall, London

    Book  Google Scholar 

  • Amoruso A, Crescentini L, Linde AT, Sacks S, Scarpa R, Romano P (2007) A horizontal crack in a layered structure satisfies deformation for the 2004–2006 uplift of Campi Flegrei. Geophys Res Lett 34:L22313. doi:10.1029/2007GL031644

    Article  Google Scholar 

  • Anderson EM (1936) The dynamics of the formation of cone sheets, ring dykes and cauldron subsidence. Proc R Soc edinburgh 56:128–163

  • Avallone A, Zollo A, Briole P, Delacourt C, Beauducel F (1999) Subsidence of Campi Flegrei (Italy) detected by SAR interferometry. Geoph Res Lett 26(15):2303–2306

    Article  Google Scholar 

  • Barberi F, Cassano E, La Torre P, Sbrana A (1991) Structural evolution of Campi Flegrei caldera in light of volcanological and geophysical data. J Volcan Geoth Res 48(1–2):33–49

    Article  Google Scholar 

  • Bosworth W, Burke K, Strecker M (2003) Effect of stress fields on magma chamber stability and the formation of collapse calderas. Tectonics 22(4):1042

    Article  Google Scholar 

  • Browning J, Gudmundsson A, Meredith P (2013) The formation and role of caldera ring faults. In: Sonja L, Acocella V (eds) Rock fractures in geological processes. Abstract of the presentation of the Symposium, London 26–27 Nov, 2013, 61–64

  • Carlino S, Somma R (2010) Eruptive versus non-eruptive behavior of large calderas: the example of Campi Flegrei caldera (Southern Italy). Bull Volcanol 72:871–886. doi:10.1007/s00445-010-0370-y

    Article  Google Scholar 

  • Carlino S, Somma R, Troise C, De Natale G (2012) The geothermal exploration of Campanian volcanoes: historical review and future development. Renew Sust Energ Rev 16:1004–1030

    Article  Google Scholar 

  • Carter L, Tsenn MC (1987) Flow properties of continental lithosphere. Tectonophysics 136(1–2):27–63

    Article  Google Scholar 

  • Cinque A, Irollo G, Romano P, Ruello MR, Amato L, Giampaola D (2011) Ground movements and sea level changes in urban areas: 5000 years of geological and archaeological record from Naples (Southern Italy). Quat Int 232(1–2):45–55

    Article  Google Scholar 

  • Costa F (2008) Residence times of silicic magmas associated with calderas. In: Gottsmann J, Marì J (eds) Caldera volcanism, analysis, modeling and response. Development in volcanology. Elsevier, 10:2–47

  • De Natale G, Troise C, Pingue F (2001) A mechanical fluid-dynamical model for ground movements at Campi Flegrei caldera. J Geophys Res 32:487–517

    Google Scholar 

  • Dufek J, Huber C., Karlstrom L (2013) Magma chamber dynamics and thermodynamics. In: Fagents SA, Gregg TKP, Lopes RMC (eds) Modeling volcanic processes. Cambridge, 5–31.

  • Gottsmann J, Battaglia M (2008) Deciphering causes of unrest at explosive collapse calderas: recent advances and future challenges of joint time-lapse gravimetric and ground deformation studies. In: Gottsmann G, Martì J (eds) Caldera volcanism, analysis, modeling and response. Elsevier, 417–446

  • Gudmundsson A (1988) Effect of tensile stress concentration around magma chambers on intrusion and extrusion frequencies. J Volcan Geoth Res 35:179–194 

    Article  Google Scholar 

  • Gudmundsson A (1990) Emplacement of dikes, sills and crustal magma chambers at divergent plate boundaries. Tectonophysics 176:257–275 

    Article  Google Scholar 

  • Gudmundsson A (1998) Formation and development of normal-fault calderas and the initiation of large explosive eruptions. Bull Volcanol 60:160–170

  • Gudmundsson A (2007) Conceptual and numerical models of ring-fault formation. J Volcan Geoth Res 164:142–160

    Article  Google Scholar 

  • Gudmundsson A (2008) Magma-chamber geometry, fluids transport, local stress and rock behavior during caldera formation. In: Gottsmann J, Marì J (eds) Caldera volcanism, analysis, modeling and response. Development in volcanology. Elsevier, 8:313–349

  • Gudmundsson A, Martí J, Turón E (1997) Stress fields generating ring faults in volcanoes. Geophys Res Lett 24:1559–1562

    Article  Google Scholar 

  • Hurwitz S, Christiansen Lizet B, Hsieh Paul A (2007) Hydrothermal fluid flow and deformation in large calderas: inferences from numerical simulation. J Geophys Res 112:B02206. doi:10.1029/2006JB004689

    Google Scholar 

  • Jellinek MA, De Paolo DJ (2003) A model for the origin of large silicic magma chambers, precursors of caldera forming eruptions. Bull Volcanol 65:363–381

    Article  Google Scholar 

  • Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry. Bull Volcanol 59:198–218

    Article  Google Scholar 

  • Locke WW, Meyer GA (1994) A 12,000 year record of vertical deformation across the Yellowstone caldera margin: the shorelines of Yellowstone Lake. J Geophys Res 99(B10):20079–20094

    Article  Google Scholar 

  • Marsh BD (2000) Magma chambers. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 191–206

    Google Scholar 

  • Milia A, Turco E, Pierantoni PP, Schettino A (2009) Faur-dimensional tectono-stratigraphic evolution of the southeastern peri-Tyrrhenian Basins (Margin of Calabria, Italy). Tectonophysics 476:41–56

    Article  Google Scholar 

  • Newhall CG, Dzurisin D (1988) Historical unrest at large calderas of the world. U S Geol Sur Bull 2:1108

    Google Scholar 

  • Papanikolaou ID, Roberts GP (2007) Geometry, kinematics and deformation rates along the active normal fault system in the southern Apennines: implications for fault growth. J Struct Geol 29:166–188

    Article  Google Scholar 

  • Rivalta E, Segall P (2008) Magma compressibility and the missing source for some dike intrusion. Geophys Res Lett. doi:10.1029/2007GL032521

    Google Scholar 

  • Rubin AM (1995) Propagation of magma-filled cracks. Annu Rev Earth Planet Sci 23:287–336. doi:10.1146/annurev.ea.23.050195.001443

    Article  Google Scholar 

  • Schon JH (2004) Physical properties of rocks. Handbook of geophysical exploration. Elsevier, p. 583

  • Ugural AC (1981) Stresses in plates and shells. McGraw-Hill, New York, p 317

    Google Scholar 

  • Walter TR (2008) Facilitating dike intrusion into ring faults. In: Gottsmann J, Marì J (eds) Caldera volcanism, analysis, modeling and response. Development in volcanology. Elsevier, 10, 352–371

  • Woo JYL, Kilburn CRJ (2010) Intrusion and deformation at Campi Flegrei, Southern Italy: sills, dikes and regional extension. J Geophys Res. doi:10.1029/2009JB006913

    Google Scholar 

  • Zamora M, Sartoris G, Chelini W (1994) Laboratory measurements of ultrasonic wave velocities in rocks from the Campi Flegrei volcanic system and their relation to other field data. J Geophys Res 99:13553–13561

    Article  Google Scholar 

  • Zoback MD (2007) Reservoir geomechanics. Cambridge University Press, p. 445

  • Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J, Gasparini P (2008) Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys Res Lett 35:L12306. doi:10.1029/2008GL034242

    Google Scholar 

Download references

Acknowledgments

This study has been funded by “ICDP Campi Flegrei Deep Drilling Project CFDDP” and by PON-MON.I.C.A. project. We would like to thank John Browning and the anonymous reviewer for their very helpful comments. We also thank the Editor Agust Gudmundsson for his helpful suggestions that improved the quality of the paper and the Executive Editor James White for the final revision of the text. We are grateful to Claudia Troise and Giuseppe De Natale (INGV) for their continuous support provided during our researches.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Carlino.

Additional information

Editorial responsibility: A. Gudmundsson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlino, S., Tramelli, A. & Somma, R. Caldera subsidence in extensional tectonics. Bull Volcanol 76, 870 (2014). https://doi.org/10.1007/s00445-014-0870-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-014-0870-2

Keywords

Navigation