Skip to main content
Log in

The role of crystallinity and viscosity in the formation of submarine lava flow morphology

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Submarine lava flow morphology is commonly used to estimate relative flow velocity, but the effects of crystallinity and viscosity are rarely considered. We use digital petrography and quantitative textural analysis techniques to determine the crystallinity of submarine basaltic lava flows, using a set of samples from previously mapped lava flow fields at the hotspot-affected Galápagos Spreading Center. Crystallinity measurements were incorporated into predictive models of suspension rheology to characterize lava flow consistency and rheology. Petrologic data were integrated to estimate bulk lava viscosity. We compared the crystallinity and viscosity of each sample with its flow morphology to determine their respective roles in submarine lava emplacement dynamics. We find no correlation between crystallinity, bulk viscosity, and lava morphology, implying that flow advance rate is the primary control on submarine lava morphology. However, we show systematic variations in crystal size and shape distribution among pillows, lobates, and sheets, suggesting that these parameters are important indicators of eruption processes. Finally, we compared the characteristics of lavas from two different sampling sites with contrasting long-term magma supply rates. Differences between lavas from each study site illustrate the significant effect of magma supply on the physical properties of the oceanic upper crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ballard RD, van Andel TH (1977) Morphology and tectonics of the inner rift valley at lat 36°50′N on the Mid-Atlantic Ridge. Geol Soc Am Bull 88:507–530. doi:10.1130/0016-7607(1977)

    Article  Google Scholar 

  • Behn MD, Sinton JM, Detrick RS (2004) Effect of the Galápagos hotspot on seafloor volcanism along the Galápagos Spreading Center (90.9°–97.6°W). Earth Planet Sci Lett 217:31–347

    Article  Google Scholar 

  • Blacic TM, Ito G, Canales JP, Detrick RS, Sinton JM (2004) Constructing the crust along the Galápagos Spreading Center 91.3°–95.5°W: correlation of seismic layer 2A with axial magma lens and topographic characteristics. J Geophys Res 109(B10310):1–19. doi:10.1029/2004JB003066

    Google Scholar 

  • Bottinga Y, Weill DF (1972) The viscosity of magmatic silicate liquids: a model for calculation. Am J Sci 272(5):438–475

    Article  Google Scholar 

  • Caricchi L, Giordano D, Burlini L, Ulmer P, Romano C (2008) Rheological properties of magma from the 1538 eruption of Monte Nuovo (Phlegrean Fields, Italy): an experimental study. Chem Geol 256(3):158–171

    Article  Google Scholar 

  • Cashman KV, Thornber C, Kauahikaua JP (1999) Cooling and crystallization of lava in open channels, and the transition of Pāhoehoe Lava to ‘A’ā. Bull Am Meteorol Soc 61(5):306–323

    Google Scholar 

  • Chadwick WW, Embley RW (1994) Lava flows from a mid-1980s submarine eruption on the Cleft segment, Juan de Fuca Ridge. J Geophys Res 99:4761–4776. doi:10.1029/93JB02041

    Article  Google Scholar 

  • Chadwick WW, Cashman KV, Embley RW, Matsumoto H, Dziak RP, De Ronde CEJ, Lau TK, Deardorff ND, Merle SG (2008) Direct video and hydrophone observations of submarine explosive eruptions at NW Rota-1 volcano, Mariana arc. J Geophys Res 113(B8):1–23. doi:10.1029/2007JB005215

    Google Scholar 

  • Christie DM, Werner R, Hauff F, Hoernle K, Hanan BB (2005) Morphological and geochemical variations along the eastern Galápagos Spreading Center. Geochem Geophys Geosyst 6(1):1–44

    Article  Google Scholar 

  • Cimarelli C, Costa A, Mueller S, Mader HM (2011) Rheology of magmas with bimodal crystal size and shape distributions: insights from analog experiments. Geochem Geophys Geosyst 12(7):1–14. doi:10.1029/2011GC003606

    Article  Google Scholar 

  • Colman A, Sinton JM, White SM, McClinton JT et al (2012) Effects of variable magma supply on mid-ocean ridge eruptions: constraints from mapped lava flow fields along the Galápagos Spreading Center. Geochem Geophys Geosyst 13(8):1–28. doi:10.1029/2012GC004163

    Article  Google Scholar 

  • Cushman B, Sinton JM, Ito G, Dixon JE (2004) Glass compositions, plume-ridge interaction, and hydrous melting along the Galápagos Spreading Center, 90.5°W to 98°W. Geochem Geophys Geosyst 5(8):1–30. doi:10.1029/2004GC000709

    Article  Google Scholar 

  • Del Gaudio PD, Ventura G, Taddeucci J (2013) The effect of particle size on the rheology of liquid–solid mixtures with application to lava flows: results from analogue experiments. Geochem Geophys Geosyst 14(8):2661–2669. doi:10.1002/ggge.20172

    Article  Google Scholar 

  • Detrick RS, Sinton JM, Ito G, Canales JP, Behn MD, Blacic T, Cushman B, Dixon JE, Graham DW, Mahoney JJ (2002) Correlated geophysical, geochemical, and volcanological manifestations of plume-ridge interaction along the Galápagos Spreading Center. Geochem Geophys Geosyst 3(10):1–14. doi:10.1029/2002GC000350

    Article  Google Scholar 

  • Dingwell DB, Webb SL (1990) Relaxation in silicate melts. Eur J Mineral 4:427–449

    Google Scholar 

  • Dingwell DB, Bagdassarov N, Bussod G, Webb SL (1993) Magma rheology. In: Luth RW (ed) Experiments at high pressure and applications to the Earth’s mantle. Mineralogical Association of Canada, Edmonton, pp 131–196

    Google Scholar 

  • Embley RW, Chadwick WW, Clague DA, Stakes D (1999) The 1998 eruption of Axial Volcano, Multibeam anomalies and sea-floor observations. Geophys Res Lett 26:3425–3428. doi:10.1029/1999GL002328

    Article  Google Scholar 

  • Ferrini V, Tivey MK, Carbotte SM, Martinez F, Roman C (2008) Variable morphologic expression of volcanic, tectonic, and hydrothermal processes at six hydrothermal vent fields in the Lau back-arc basin. Geochem Geophys Geosyst 9(7):1–33. doi:10.1029/2008GC002047

    Article  Google Scholar 

  • Fink JH, Griffiths RW (1990) Radial spreading of viscous-gravity currents with solidifying crust. J Fluid Mech 221(1):485–509. doi:10.1017/S0022112090003640

    Article  Google Scholar 

  • Giordano D, Dingwell DB (2003) Non-Arrhenian multicomponent melt viscosity: a model. Earth Planet Sci Lett 208(3):337–349

    Article  Google Scholar 

  • Giordano D, Mangicapra A, Potuzak M, Russell JK, Romano C, Dingwell DB, Di Muro A (2006) An expanded non-Arrhenian model for silicate melt viscosity: a treatment for metaluminous, peraluminous and peralkaline melts. Chem Geol 229:42–56

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134. doi:10.1016/j.epsl.2008.03.038

    Article  Google Scholar 

  • Giordano D, Polacci M, Papale P, Caricchi L (2010) Rheological control on the dynamics of explosive activity in the 2000 summit eruption of Mt. Etna. Solid Earth 1:61–69. doi:10.5194/se-1-61-2010

    Article  Google Scholar 

  • Gregg TKP, Fink JH (1995) Quantification of submarine lava-flow morphology through analog experiments. Geology 23:73–76

    Article  Google Scholar 

  • Gregg TKP, Fink JH (2000) A laboratory investigation into the effects of slope on lava flow morphology. J Volcanol Geotherm Res 96(3–4):145–159. doi:10.1016/S0377-0273(99)00148-1

    Article  Google Scholar 

  • Gregg TKP, Fornari DJ (1998) Long submarine lava flows: observations and results from numerical modeling. J Geophys Res 103(B11):27517–27531

    Article  Google Scholar 

  • Gregg TKP, Smith DK (2003) Volcanic investigations of the Puna Ridge, Hawai’i: relations of lava flow morphologies and underlying slopes. J Volcanol Geotherm Res 126(2003):63–77

    Article  Google Scholar 

  • Gregg TKP, Fink JH, Griffiths RW (1998) Formation of multiple fold generations on lava flow surfaces: influence of strain rate, cooling rate, and lava composition. J Volcanol Geotherm Res 80(1998):281–292

    Article  Google Scholar 

  • Griffiths RW, Fink JA (1992) Solidification and morphology of submarine lavas: a dependence on extrusion rate. J Geophys Res 97:19729–19737

    Article  Google Scholar 

  • Hammer JE, Rutherford MJ (2002) An experimental study of the kinetics of decompression-induced crystallization in silicic melt. J Geophys Res 107(B1):ECV8-1–ECV8-24

    Google Scholar 

  • Hammer JE, Rutherford MJ (2003) Petrologic indicators of preeruption magma dynamics. Geology 31(1):79–82

    Article  Google Scholar 

  • Harris A, Murray JB, Aries SE, Davies MA, Flynn LP, Wooster MJ, Wright R, Rothery DA (2001) Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms. J Volcanol Geotherm Res 102:237–270. doi:10.1016/S0377-0273(00)00190-6

    Article  Google Scholar 

  • Helz RT, Thornber CR (1987) Geothermometry of Kilauea Iki lava lake, Hawaii. Bull Am Meteorol Soc 49(5):651–668

    Google Scholar 

  • Higgins MD (2000) Measurement of crystal size distributions. Am Mineral 85(9):1105–1116

    Google Scholar 

  • Hon K, Kauahikaua J, Denlinger R, Mackay K (1994) Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol Soc Am Bull 106(3):351–370

    Article  Google Scholar 

  • Hui H, Zhang Y (2007) Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim Cosmochim Acta 71(2):403–416

    Article  Google Scholar 

  • Ishibashi H (2009) Non-Newtonian behavior of plagioclase-bearing basaltic magma: subliquidus viscosity measurement of the 1707 basalt of Fuji volcano, Japan. J Volcanol Geotherm Res 181(1):78–88

    Article  Google Scholar 

  • Kitano T, Kataoka T (1981) The rheology of suspensions of vinylon fibers in polymer liquids, I. Suspensions in silicone oil. Rheol Acta 20:390–402

    Article  Google Scholar 

  • Lanzafame G, Mollo S, Iezzi G, Ferlito C, Ventura G (2013) Unraveling the solidification path of a pahoehoe “cicirara” lava from Mount Etna volcano. Bull Am Meteorol Soc 75(4):1–16

    Google Scholar 

  • Lipman PW, Banks NG (1987) AA flow dynamics, Mauna Loa 1984. US Geol Surv Prof Pap 1350:1527–1567

    Google Scholar 

  • Lipman PW, Banks NG, Rhodes JM (1985) Degassing-induced crystallization of basaltic magma and effects on lava rheology. Nature 317:604–607

    Article  Google Scholar 

  • Mader HM, Llewellin EW, Mueller SP (2013) The rheology of two-phase magmas: a review and analysis. J Volcanol Geotherm Res 257:135–158

    Article  Google Scholar 

  • Maron SH, Pierce PE (1956) Application of Ree-Eyring generalized flow theory to suspensions of spherical particles. J Coll Sci Imp U Tok 11(1):80–95

    Article  Google Scholar 

  • Marsh BD (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib Mineral Petrol 78(1):85–98

    Article  Google Scholar 

  • McClinton T, White SM, Colman A, Sinton JM (2013) Reconstructing lava flow emplacement processes at the hotspot-affected Galápagos Spreading Center, 95°W and 92°W. Geochem Geophys Geosyst 14(8):2731–2756. doi:10.1002/ggge.20157

    Article  Google Scholar 

  • Morgan DJ, Jerram DA (2006) On estimating crystal shape for crystal size distribution analysis. J Volcanol Geotherm Res 154(1):1–7

    Article  Google Scholar 

  • Mueller S, Llewellin EW, Mader HM (2010) The rheology of suspensions of solid particles. Proc R Soc A Math Phys Eng Sci 466(2116):1201–1228

    Article  Google Scholar 

  • Mueller S, Llewellin EW, Mader HM (2011) The effect of particle shape on suspension viscosity and implications for magmatic flows. Geophys Res Lett 38, L13316. doi:10.1029/2011GL047167

    Google Scholar 

  • Pabst W, Gregorová E, Berthold C (2006) Particle shape and suspension rheology of short-fiber systems. J Eur Ceram Soc 26(1):149–160

    Article  Google Scholar 

  • Pinkerton H, Norton G (1995) Rheological properties of basaltic lavas at sub-liquidus temperatures: laboratory and field measurements on lavas from Mount Etna. J Volcanol Geotherm Res 68(4):307–323

    Article  Google Scholar 

  • Pinkerton H, Stevenson RJ (1992) Methods of determining the rheological properties of magmas at sub-liquidus temperatures. J Volcanol Geotherm Res 53(1):47–66

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Article  Google Scholar 

  • Resing JA, Rubin KH, Embley RW, Lupton JE, Baker ET, Dziak RP et al (2011) Active submarine eruption of boninite in the northeastern Lau Basin. Nat Geosci 4(11):799–806. doi:10.1038/NGEO1275

    Article  Google Scholar 

  • Richter DH, Eaton JP, Murata KJ, Ault WA, Krivoy HL (1973) Chronological narrative of the 1959-1960 eruption of Kilauea volcano, Hawaii. U S Geol Surv Prof Pap 537-E:1–73

    Google Scholar 

  • Rubin KH, Sinton JM (2007) Inferences on mid-ocean ridge thermal and magmatic structure from MORB compositions. Earth Planet Sci Lett 260:257–276

    Article  Google Scholar 

  • Rubin KH, Soule SA, Chadwick WW, Fornari DJ, Clague DS, Embley RW, Baker ET, Perfit MR, Caress DW, Dziak RP (2012) Volcanic eruptions in the deep sea. Oceanography 25:142–157

    Article  Google Scholar 

  • Russell JK, Giordano D, Dingwell DB (2003) High-temperature limits on viscosity of non-Arrhenian silicate melts. Am Mineral 8:1390–1394

    Google Scholar 

  • Rutgers IR (1962) Relative viscosity of suspensions of rigid spheres in Newtonian liquids. Rheol Acta 2:202–210

    Article  Google Scholar 

  • Ryerson FJ, Weed HC, Piwinskii AJ (1988) Rheology of subliquidus magmas: 1. Picritic compositions. J Geophys Res 93(B4):3421–3436

    Article  Google Scholar 

  • Sato H (2005) Viscosity measurement of subliquidus magmas: 1707 basalt of Fuji volcano. J Mineral Petrol Sci 100(4):133–142

    Article  Google Scholar 

  • Searle RC, Murton BJ, Achenbach K, LeBas T, Tivey M, Yeo I, Cormier MH, Carlut J, Ferreira P, Mallows C (2010) Structure and development of an axial volcanic ridge: Mid-Atlantic Ridge, 45°N. Earth Planet Sci Lett 299:228–241

    Article  Google Scholar 

  • Shaw HR (1969) Rheology of basalt in the melting range. J Petrol 10:510–535

    Article  Google Scholar 

  • Shaw HR (1972) Viscosities of magmatic silicate liquids: an empirical method of prediction. Am J Sci 272(9):870–893

    Article  Google Scholar 

  • Sinton JM, Detrick RS (1992) Mid-ocean ridge magma chambers. J Geophys Res 97:197–216

    Article  Google Scholar 

  • Sinton JM, Detrick RS, Canales JP, Ito G, Behn MD (2003) Morphology and segmentation of the western Galápagos Spreading Center, 90.5°–98°W: plume-ridge interaction at an intermediate spreading ridge. Geochem Geophys Geosyst 4(12):1–26. doi:10.1029/2003GC000609

    Article  Google Scholar 

  • Soule SA, Cashman KV (2005) Shear rate dependence of the pāhoehoe-to-‘a‘ā transition: analog experiments. Geology 33(5):361–364

    Article  Google Scholar 

  • Soule SA, Nakata DS, Fornari DJ, Fundis AT, Perfit MR, Kurz MD (2012) CO2 variability in mid-ocean ridge basalts from syn-emplacement degassing: constraints on eruption dynamics. Earth Planet Sci Lett 327–328:39–49

    Article  Google Scholar 

  • Swanson DA, Duffield WA, Jackson DB, Peterson DW (1979) Chronological narrative of the 1969-71 Mauna Ulu Eruption of Kilauea Volcano, Hawaii. U S Geol Surv Prof Pap 1056:1–55

    Google Scholar 

  • Thomas DG (1965) Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. J Colloid Sci 20:267–277

    Article  Google Scholar 

  • Thorarinsson S, Steinthorsson S, Einarsson T, Kristmannsdottir H, Oskarsson N (1973) The eruption on Heimaey, Iceland. Nature 241:372–375. doi:10.1038/241372a0

    Article  Google Scholar 

  • Vona A, Romano C, Dingwell DB, Giordano D (2011) The rheology of crystal-bearing basaltic magmas from Stromboli and Etna. Geochim Cosmochim Acta 75(11):3214–3236

    Article  Google Scholar 

  • Wadge G (1981) The variation of magma discharge during basaltic eruptions. J Volcanol Geotherm Res 11(2):139–168

    Article  Google Scholar 

  • White SM, Meyer JD, Haymon RM, Macdonald KC (2008) High-resolution surveys along the hot spot-affected Galápagos Spreading Center: 2. Influence of magma supply on volcanic morphology. Geochem Geophy Geosyst 9(9):1–29. doi:10.1029/2008GC002036

    Article  Google Scholar 

  • Yeo I, Clague DA, Martin JF, Paduan JB, Caress DW (2013) Preeruptive flow focusing in dike feeding historical pillow ridges on the Juan de Fuca and Gorda Ridges. Geochem Geophys Geosyst 14(9):3586–3599. doi:10.1002/ggge.20210

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank JoAnn Sinton and Eric Hellebrand for help with thin section preparation and electron microprobe analyses. We thank Sonia Calvari, Lucia Gurioli, and an anonymous reviewer for comments that greatly improved this manuscript. Tracy Gregg is thanked for valuable feedback on an early version of this work. This work was supported by NSF grants OCE08-49813 to JMS and KHR and OCE08-49711 to SMW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Timothy McClinton.

Additional information

Editorial responsibility: S. Calvari

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McClinton, J.T., White, S.M., Colman, A. et al. The role of crystallinity and viscosity in the formation of submarine lava flow morphology. Bull Volcanol 76, 854 (2014). https://doi.org/10.1007/s00445-014-0854-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-014-0854-2

Keywords

Navigation