Skip to main content
Log in

Coupling eruption and tsunami records: the Krakatau 1883 case study, Indonesia

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The well-documented 1883 eruption of Krakatau volcano (Indonesia) offers an opportunity to couple the eruption’s history with the tsunami record. The aim of this paper is not to re-analyse the scenario for the 1883 eruption but to demonstrate that the study of tsunami deposits provides information for reconstructing past eruptions. Indeed, though the characteristics of volcanogenic tsunami deposits are similar to those of other tsunami deposits, they may include juvenile material (e.g. fresh pumice) or be interbedded with distal pyroclastic deposits (ash fall, surges), due to their simultaneity with the eruption. Five kinds of sedimentary and volcanic facies related to the 1883 events were identified along the coasts of Java and Sumatra: (1) bioclastic tsunami sands and (2) pumiceous tsunami sands, deposited respectively before and during the Plinian phase (26–27 August); (3) rounded pumice lapilli reworked by tsunami; (4) pumiceous ash fall deposits and (5) pyroclastic surge deposits (only in Sumatra). The stratigraphic record on the coasts of Java and Sumatra, which agrees particularly well with observations of the 1883 events, is tentatively linked to the proximal stratigraphy of the eruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allen SR, Cas RAF (2001) Transport of pyroclastic flows across the sea during the explosive, rhyolitic eruption of the Kos Plateau Tuff, Greece. Bull Volcanol 62:441–456

    Article  Google Scholar 

  • Begét JE (2000) Volcanic tsunamis. In: Sigurdsson H, Houghton B, Mc Nutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, New York, pp 1005–1013

    Google Scholar 

  • Blong RJ, McKee CO (1995) The Rabaul eruption 1994—destruction of a town. Natural Hazards Research Center, Macquarie University, Australia, 52 p

    Google Scholar 

  • Bourgeois J (2009) Geologic effects and records of tsunamis. In: Robinson AR, Bernard EN (eds.) The sea, vol. 15: tsunamis. Harvard: Harvard University Press. pp 53–91

  • Bronto S (1990) Gunung Krakatau, Berita Berkala Vulkanologi,. Edisi Khusus No.133, Direktorat Vulkanologi, 5h, unpublished.

  • Cailleux A, Tricart J (1959) Contribution à l’étude des sables et des galets. CDU, Paris, 376 p

    Google Scholar 

  • Camus G, Vincent PM (1983) Discussion of a new hypothesis for the Krakatau volcanic eruption in 1883. J Volcanol Geotherm Res 19:167–173

    Article  Google Scholar 

  • Camus G, Gourgaud A, Vincent PM (1987) Petrologic evolution of Krakatau (Indonesia): implications for a future activity. J Volcanol Geotherm Res 33:299–316

    Article  Google Scholar 

  • Carey S, Sigurdsson H, Mandeville C, Bronto S (1996) Pyroclastic flows and surges over water: an example from the 1883 Krakatau eruption. Bull Volcanol 57:493–511

    Article  Google Scholar 

  • Carey S, Morelli D, Sigurdsson H, Bronto S (2001) Tsunami deposits from major explosive eruptions: an example from the 1883 eruption of Krakatau. Geology 29(4):347–350

    Article  Google Scholar 

  • Chagué-Goff C (2010) Chemical signature of palaeotsunamis: a forgotten proxy? Mar Geol 271:67–71

    Article  Google Scholar 

  • Choi BH, Pelinovsky E, Kim KO, Lee JS (2003) Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption. Nat Hazards Earth Syst Sci 3:321–332

    Article  Google Scholar 

  • Cuven S, Paris R, Falvard S, Miot-Noirault E, Benbakkar M, Schneider JL, Billy I (2013) High-resolution analysis of a tsunami deposit: case-study from the 1755 Lisbon tsunami in south-western Spain. Mar Geol 337:98–111

    Article  Google Scholar 

  • Dawson AG (1996) The geological significance of tsunamis. Zeitschrift für Geomorphologie Suppl Band 102:199–210

    Google Scholar 

  • Dawson AG, Stewart I (2007) Tsunami deposits in the geological record. Sediment Geol 200:166–183

    Article  Google Scholar 

  • de Lange WP, Moon VG (2007) Tsunami washover deposits, Tawharanui, New Zealand. Sediment Geol 200:232–247

    Article  Google Scholar 

  • Ewing M, Press F (1955) Tide-gage disturbances from the great eruption of Krakatoa. Trans Am Geophys Union 36(1):53–60

    Article  Google Scholar 

  • Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer, Berlin, 472 p

    Book  Google Scholar 

  • Francis PW (1985) The origin of the 1883 Krakatau tsunamis. J Volcanol Geotherm Res 25:349–363

    Article  Google Scholar 

  • Freundt A, Strauch W, Kutterolf S, Schmincke HU (2007) Volcanogenic tsunamis in lakes: examples from Nicaragua and general implications. Pure Appl Geophys 164:527–545

    Article  Google Scholar 

  • Giachetti T, Paris R, Kelfoun K, Ontowirjo B (2012) Tsunami hazard related to a flank collapse of Anak Krakatau volcano, Sunda Strait, Indonesia. Geological Society, London, Special Publication 361:79–89

  • Goff JR, Chagué-Goff C, Nichol SL, Jaffe B, Dominey-Howes D (2012) Progress in palaeotsunami research. Sediment Geol 243–244:70–88

    Article  Google Scholar 

  • Hudspith VA, Scott AC, Wilson CJN, Collinson ME (2010) Charring of woods by volcanic processes: an example from the Taupo ignimbrite, New Zealand. Palaeogeogr Palaeoclimatol Palaeoecol 291:40–51

    Article  Google Scholar 

  • Keating BH, Helsley CE, Wanink M, Walker D (2011) Tsunami deposit research: fidelity of the tsunami record, ephemeral nature, tsunami deposits characteristics, remobilization of sediments by later waves, and boulder movement. In: Mörner NA (Ed.) The tsunami threat—Research and Technology. InTech, 714 p

  • Latter JN (1981) Tsunamis of volcanic origin: summary of causes with particular references to Krakatoa, 1883. Bull Volcanol 44(3):467–490

    Article  Google Scholar 

  • Maeno F, Imamura F (2011) Tsunami generation by a rapid entrance of pyroclastic flow into the sea during the 1883 Krakatau eruption, Indonesia. J Geophys Res 116, B09205

    Google Scholar 

  • Mandeville CW, Carey S, Sigurdsson H, King J (1994) Paleomagnetic evidence of high-temperature emplacement of the 1883 subaqueous pyroclastic flows from Krakatau volcano, Indonesia. J Geophys Res 99:9487–9504

    Article  Google Scholar 

  • Mandeville CW, Carey S, Sigurdsson H (1996a) Magma mixing, fractional crystallization and volatile degassing during the 1883 eruption of Krakatau volcano, Indonesia. J Volcanol Geotherm Res 74:243–274

    Article  Google Scholar 

  • Mandeville CW, Carey S, Sigurdsson H (1996b) Sedimentology of the Krakatau 1883 submarine pyroclastic deposits. Bull Volcanol 57:512–529

    Article  Google Scholar 

  • Minoura K, Imamura F, Kuran U, Nakamura T, Papadopoulos GA, Takahashi T, Yalciner AC (2000) Discovery of Minoan tsunami deposits. Geology 28(1):59–62

    Article  Google Scholar 

  • Nishimura Y, Miyaji N (1995) Tsunami deposits from the 1993 Southwest Hokkaido earthquake and the 1640 Hokkaido Komagatake eruption, Northern Japan. Pure Appl Geophys 144:719–733

    Article  Google Scholar 

  • Nishimura Y, Nakagawa M, Kuduon J, Wukawa J (2005) Timing and scale of tsunamis caused by the 1994 Rabaul eruption, East New Britain, Papua New Guinea. In: Satake K (ed) Tsunamis: case studies and recent developments. Springer, New York, pp 43–56

    Chapter  Google Scholar 

  • Nomanbhoy N, Satake K (1995) Generation mechanism of tsunamis from the 1883 Krakatau eruption. Geophys Res Lett 22(4):509–512

    Article  Google Scholar 

  • Ongkosongo OSR (1983) Coastal geomorphology of Cilegon-Labuhan, West Java, with special emphasis on the remnants of the 1883 Krakatau tsunamic activity. Symposium on 100th year Development of Krakatau and its surroundings, August 23–27, 1983, Jakarta, Indonesia

  • Paris R, Lavigne F, Wassmer P, Sartohadi J (2007) Coastal sedimentation associated with the December 26, 2004 in Lhok Nga, west Banda Aceh (Sumatra, Indonesia). Mar Geol 238:93–106

    Article  Google Scholar 

  • Paris R, Switzer AD, Belousova M, Belousov A, Ontowirjo B, Whelley PL, Ulvrova M (2013) Volcanic tsunami: a review of source mechanisms, past events and hazards in Southeast Asia (Indonesia, Philippines, Papua New Guinea). Natural Hazards. doi:10.1007/s11069-013-0822-8

    Google Scholar 

  • Pelinovsky E, Choi BH, Stromkov A, Didenkulova I, Kim HS (2005) Analysis of tide-gauge records of the 1883 Krakatau tsunami. In: Satake K (ed) Tsunamis: case studies and recent developments. Springer, New York, pp 57–78

    Chapter  Google Scholar 

  • Schmincke HU, Fisher RV, Waters AC (1973) Antidune and chute and pool structures in the base surge deposits of the Laacher See area, Germany. Sedimentology 20:553–574

    Article  Google Scholar 

  • Scott AC, Glasspool IJ (2005) Charcoal reflectance as a proxy for the emplacement temperature of pyroclastic flow deposits. Geology 33(7):589–592

    Article  Google Scholar 

  • Self S (1992) Krakatau revisited: the course of events and interpretation of the 1883 eruption. Geo Journal 282:109–121

    Google Scholar 

  • Self S, Rampino MR (1981) The 1883 eruption of Krakatau. Nature 294:699–704

    Article  Google Scholar 

  • Setjaatmadja CM (2007) Boulder deposition associated with the 1883 Krakatau tsunami in Java and Sumatra. Unpublished M.S. Thesis, Asian Institute of Technology, Bangkok

  • Sewell DA (2001) Earth, air, fire and water. An elemental analysis of the Minoan eruption of Santorini volcano in the Late Bronze Age. Unpublished PhD Thesis, University of Reading, 427 p

  • Simkin T, Fiske RS (1983) Krakatau 1883: the volcanic eruption and its effects. Smithsonian Institution Press, Washington DC, 464 p

    Google Scholar 

  • Stehn CE (1929) The geology and volcanism of the Krakatau group. Proceedings of the Fourth Pacific Science Congress, Batavia, pp 1–55

    Google Scholar 

  • Symons G (1888) The eruption of Krakatau and subsequent phenomena: reports of the Krakatau Committee of the Royal Society. Trubner, London

    Google Scholar 

  • Terry JP, Lau AYA, Etienne S (2013) Reef-platform coral boulders—evidence for high-energy marine inundation events on tropical coastlines. Springer Briefs in Earth Science, 102 p

  • Umbgrove JHF (1947) Coral reefs of the East Indies. Bull Geol Soc Am 58:729–778

    Article  Google Scholar 

  • Van den Berg GD, Boer W, de Haas H, van Weering TCE, van Wijhe R (2003) Shallow marine tsunami deposits in Teluk Banten (NW Java, Indonesia), generated by the 1883 Krakatau eruption. Mar Geol 197:13–34

    Article  Google Scholar 

  • Verbeek RM (1886) Krakatau. Batavia, Imprimerie de l’Etat, 567 p

    Google Scholar 

  • Verstappen HT (1956) Landscape development of the Udjung Kulon Game Reserve. Penggemar Alam 36:37–51

    Google Scholar 

  • Wassmer P, Schneider JL, Fonfrège AV, Lavigne F, Paris R, Gomez C (2010) Use of anisotropy of magnetic susceptibility (AMS) in the study of tsunami deposits: application to the 2004 deposits on the eastern coast of Banda Aceh, North Sumatra, Indonesia. Mar Geol 275:255–272

    Article  Google Scholar 

  • Waythomas CF, Neal CA (1998) Tsunami generation by pyroclastic flow during the 3500-year BP caldera-forming eruption of Aniakchak volcano, Alaska. Bull Volcanol 60:110–124

    Article  Google Scholar 

  • Williams H (1941) Calderas and their origin. Univ Calif Publ Geol Sci 25:239–346

    Google Scholar 

  • Wohletz KH, Sheridan MF (1979) A model of pyroclastic surge. Geol Soc Amer Spec Pap 180:177–193

    Article  Google Scholar 

  • Yokoyama I (1981) A geophysical interpretation of the 1883 Krakatau eruption. J Volcanol Geotherm Res 9:359–378

    Article  Google Scholar 

  • Yokoyama I (1987) A scenario of the 1883 Krakatau tsunami. J Volcanol Geotherm Res 34:123–132

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by French ANR (Agence Nationale de la Recherche) program “Young Scientist” 2008–project VITESSS (Volcano-Induced Tsunamis: Sedimentary Signature and numerical Simulation) whose leader was Raphaël Paris. The authors are also grateful to Jean-Marc Hénot (SEM, Clermont-Ferrand), Marc Diraison and Martine Trautmann (AMS and grain size analysis, Strasbourg), Claudia Maxcia Setjaatmadja, Eko Yulianto and Brian Atwater (for giving unpublished manuscript on coral boulders), and David Dublanchet (for building the kml files). The authors thank Scott Bryan, Adam Switzer and an anonymous reviewer for their careful reviews, as well as Steve Self and James White. This is Laboratory of Excellence ClerVolc contribution n° 90.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Paris.

Additional information

Editorial responsibility: S. Self

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 21 kb)

Table S2

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paris, R., Wassmer, P., Lavigne, F. et al. Coupling eruption and tsunami records: the Krakatau 1883 case study, Indonesia. Bull Volcanol 76, 814 (2014). https://doi.org/10.1007/s00445-014-0814-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-014-0814-x

Keywords

Navigation