Skip to main content
Log in

Hazard map for volcanic ballistic impacts at Popocatépetl volcano (Mexico)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

During volcanic explosions, volcanic ballistic projectiles (VBP) are frequently ejected. These projectiles represent a threat to people, infrastructure, vegetation, and aircraft due to their high temperatures and impact velocities. In order to protect people adequately, it is necessary to delimit the projectiles’ maximum range within well-defined explosion scenarios likely to occur in a particular volcano. In this study, a general methodology to delimit the hazard zones for VBP during volcanic eruptions is applied to Popocatépetl volcano. Three explosion scenarios with different intensities have been defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with VBP ejected during previous eruptions. A ballistic model is used to reconstruct the “launching” kinetic energy of VBP observed in the field. In the case of Vulcanian eruptions, the most common type of activity at Popocatépetl, the ballistic model was used in concert with an eruptive model to correlate ballistic range with initial pressure and gas content, parameters that can be estimated by monitoring techniques. The results are validated with field data and video observations of different Vulcanian eruptions at Popocatépetl. For each scenario, the ballistic model is used to calculate the maximum range of VBP under optimum “launching” conditions: ballistic diameter, ejection angle, topography, and wind velocity. Our results are presented in the form of a VBP hazard map with topographic profiles that depict the likely maximum ranges of VBP under explosion scenarios defined specifically for Popocatépetl volcano. The hazard zones shown on the map allow the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alatorre-Ibargüengoitia MA, Delgado-Granados H (2006) Experimental determination of drag coefficient for volcanic materials: calibration and application of a model to Popocatépetl volcano (Mexico) ballistic projectiles. Geophys Res Lett 33:L11302. doi:10.1029/2006GL026195

    Article  Google Scholar 

  • Alatorre-Ibargüengoitia MA, Delgado-Granados H, Farraz-Montes I (2001) Mapa de Peligros por Caída de Productos balísticos del Volcán Popocatépetl (in Spanish). http://www.geofisica.unam.mx/divulgacion/mapas/balisticos.zip

  • Alatorre-Ibargüengoitia MA, Delgado-Granados H, Farraz-Montes IA (2006) Hazard zoning for ballistic impact during volcanic explosions at Volcán de Fuego de Colima (Mexico). Geol Soc Am Spec Pap 402:26–39

    Google Scholar 

  • Alatorre-Ibargüengoitia MA, Scheu B, Dingwell DB, Delgado-Granados H, Taddeucci J (2010) Energy consumption by magmatic fragmentation and pyroclast ejection during Vulcanian eruptions. Earth Planet Sci Lett 291:60–69

    Article  Google Scholar 

  • Aramaki S (1956) The 1783 activity of Asama volcano. Part I. Jpn J Geol Geog 27:189–229

    Google Scholar 

  • Blong RJ (1984) Volcanic hazard: a sourcebook on the effects of eruptions. Academic, Orlando

    Google Scholar 

  • Bower SM, Woods AW (1996) On the dispersal of clasts from volcanic craters during small explosive eruptions. J Volcanol Geotherm Res 73:19–32

    Article  Google Scholar 

  • Capra L, Poblete MA, Alvarado R (2004) The 1997 and 2001 lahars of Popocatépetl volcano (Central Mexico): textural and sedimentological constraints on their origin and hazard. J Volcanol Geotherm Res 131:351–369

    Article  Google Scholar 

  • De la Cruz-Reyna S (1991) Poisson-distributed patterns of explosive eruptive activity. Bull Volcanol 54:57–67

    Article  Google Scholar 

  • De la Cruz-Reyna S, Tilling R (2008) Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, México: importance of an effective hazard warning system. J Volcanol Geotherm Res 170:121–134

    Article  Google Scholar 

  • De la Cruz-Reyna S, Quezada JL, Peña C, Zepeda O, Sanchez T (1995) Historia de la actividad reciente del Volcan Popocatépetl. Volcán Popocatépetl Estudios Realizados durante la Crisis de 1994–1995 (in Spanish). SINAPROC-CENEPRED-UNAM, Mexico City, pp 3–22

    Google Scholar 

  • de’ Michieli Vitturi M, Neri A, Esposti Ongaro T, Lo Savio S, Boschi E (2010) Lagrangian modeling of large volcanic particles: applications to Vulcanian explosions. J Geophys Res 115:B08206. doi:10.1029/2009JB007111

    Article  Google Scholar 

  • Delgado-Granados H, Cárdenas González L, Piedad Sánchez N (2001) Sulfur dioxide emissions from Popocatépetl volcano (Mexico): case study of a high-emission rate, passively degassing erupting volcano. J Volcanol Geotherm Res 108:107–120

    Article  Google Scholar 

  • Fagents SA, Wilson L (1993) Explosive volcanic eruptions—VII. The ranges of pyroclasts ejected in transient volcanic explosions. Geophys J Int 113:359–370

    Article  Google Scholar 

  • Formenti Y, Druitt TH, Kelfoun K (2003) Characterisation of the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat, by video analysis. Bull Volcanol 65:587–605

    Article  Google Scholar 

  • Fudali RF, Melson WG (1972) Ejecta velocities, magma chamber pressure and kinetic energy associated with the 1968 eruption of Arenal volcano. Bull Volcanol 35(2):383–401

    Article  Google Scholar 

  • Gellert EP, Cimpoeru SJ, Woodward RL (2000) A study of the effect of target thickness on the ballistic perforation of glass-fibre-reinforced plastic composites. Int J Impact Eng 24:445–456

    Article  Google Scholar 

  • Julio-Miranda P, González-Huesca AE, Delgado Granados H, Kääb A (2005) Glacier melting formation during January 22 2001, eruption, Popocatépetl volcano (Mexico). Z Geomorphol 140:95–102

    Google Scholar 

  • Julio-Miranda P, Delgado Granados H, Huggel C, Kääb A (2008) Impact of the eruptive activity on glacier evolution at Popocatépetl volcano (México) during 1994–2001. J Volcanol Geotherm Res 170:86–98. doi:10.1016/j.jvolgeores.2007.09.011

    Article  Google Scholar 

  • Macías JL, Siebe C (2005) Popocatépetl’s crater filled to the brim: significance for hazard evaluation. J Volcanol Geotherm Res 141:327–330

    Article  Google Scholar 

  • Martín del Pozzo AL, Cifuentes G, Cabral-Cano E, Bonifaz R, Correa F, Mendiola IF (2003) Timing magma ascent at Popocatépetl Volcano, Mexico 2000–2001. J Volcanol Geotherm Res 125:107–120

    Article  Google Scholar 

  • Mastin LG (2001) A Simple calculator of ballistic trajectories for blocks ejected during volcanic eruptions. Open-file Report 01–45, U.S. Geological Survey, Vancouver, Washington

  • Mendoza-Rosas AT, De la Cruz-Reyna S (2008) A statistical method linking geological and historical eruption time series for volcanic hazard estimations: applications to active polygenetic volcanoes. J Volcanol Geotherm Res 176:277–290

    Article  Google Scholar 

  • Mendoza-Rosas AT, De la Cruz-Reyna S (2009) A mixture of exponentials distribution for a simple and precise assessment of the volcanic hazard. Nat Hazard Earth Syst Sci 9:425–431

    Article  Google Scholar 

  • Morrissey M, Mastin L (2000) Vulcanian eruptions. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 463–475

    Google Scholar 

  • Riddle R, Lesuer D, Syn C, Gogolewski R, Cunningham B (1996) Application of metal laminates to aircraft structures: prediction of penetration performance. Finite Elem Anal Des 23:173–192

    Article  Google Scholar 

  • Robin C, Boudal C (1987) A gigantic Bezymianny-type event at the begining of modern Popocatépetl. J Volcanol Geotherm Res 31:115–130

    Article  Google Scholar 

  • Rose TR, Fiske RS, Swanson DA (2001) Explosively erupted Gabbro from Kilauea volcano’s summit magmatic system. Eos Trans. Agu 82(47), Fall Meet. Suppl., Abstract V12B-0976

  • Self S, Wilson L, Nairn IA (1979) Vulcanian eruption mechanisms. Nature 277:440–443

    Article  Google Scholar 

  • Self S, Kienle J, Huot J (1980) Ukinrek Maars, Alaska, II. Deposits and formation of the 1977 Craters. J Volcanol Geotherm Res 7:39–65

    Article  Google Scholar 

  • Sherwood AE (1967) Effect of air drag on particles ejected during explosive cratering. J Geophys Res 72(6):1783–1791

    Article  Google Scholar 

  • Siebe C, Macías JL (2004) Volcanic hazard in the Mexico City metropolitan area from eruptions at Popocatépetl, Nevado de Toluca, and Jocotitlán stratovolcanoes and monogenetic scoria cones in the Sierra de Chichinautzin volcanic field. Fieldtrip Guide, Penrose Conference, Neogene-Quaternary Continental Margin Volcanism. Geol Soc Am Boulder Colorado. doi: 10.1130/2004

  • Siebe C, Abrams M, Macías JL, Obenholzner J (1996) Repeated volcanic disasters in Prehispanic time at Popocatépetl, Central Mexico: past key to the future? Geology 24:399–402

    Article  Google Scholar 

  • Small C, Naumann T (2001) The global distribution of human population and recent volcanism. Environ Hazard 3:93–109

    Google Scholar 

  • Smithsonian Institution (1991) Sakurajima, explosions remain frequent; tephra from one explosion damages houses and cars. Bull Glob Volcanism Netw 16(6)

  • Smithsonian Institution (1998a) Popocatépetl. Growing lava body in crater leads to larger explosions. Bull Glob Volcanism Netw 23(11)

  • Smithsonian Institution (1998b) Popocatépetl. Ash emissions, fires following energetic explosions in December. Bull Glob Volcanism Netw 23(12)

  • Smithsonian Institution (2000) Popocatépetl. December set records in tremor, dome extrusion rates, SO2 flux, and tilt. Bull Glob Volcanism Netw 25(12)

  • Smithsonian Institution (2001) Masaya tourists experience a brief, bomb-charged 23 April 2001 explosion: no fatalities. Bull Glob Volcanism Netw 26(4)

  • Smithsonian Institution (2003a) Stromboli. Strong explosion on 5 April covers much of the summit in pyroclastic deposits. Bull Glob Volcanism Netw 28(4)

  • Smithsonian Institution (2003b) Popocatépetl. Cycles of dome growth and destruction; continuing activity. Bull Glob Volcanism Netw 28(2)

  • Sosa-Ceballos G, Gardner JE, Siebe C, Macías JL (2012) A caldera-forming eruption 14,100 14C yr BP at Popocatépetl volcano, México: insights from eruption dynamics and magma mixing. J Volcanol Geotherm Res 213–214:27–40

    Article  Google Scholar 

  • Spieler O, Kennedy B, Kueppers U, Dingwell DB, Scheu B, Taddeucci J (2004) The fragmentation threshold of pyroclastic rocks. Earth Planet Sci Lett 226:139–148

    Article  Google Scholar 

  • Steinberg GS, Lorenz V (1983) External ballistic of volcanic explosions. Bull Volcanol 46(4):333–348

    Article  Google Scholar 

  • Straub SM, Martin-Del Pozzo AL (2001) The significance of phenocryst diversity in tephra from recent eruptions at Popocatépetl volcano (central Mexico). Contrib Mineral Petrol 140:487–510

    Article  Google Scholar 

  • Swanson D, Zolkos S, Haravitch B (2010) Ballistic blocks surrounding Kilauea’s caldera. EOS Trans Am Geophys Union 91:V33B–V0646B

    Google Scholar 

  • Tilling RI (1989) Introductions and overview. In: Tilling RI (ed) Volcanic hazard: short course presented at the 28th International Geological Congress. AGU, Washington, pp 1–8

    Google Scholar 

  • Waitt RB, Mastin LG, Miller TP (1995) Ballistic showers during crater peak eruptions of Mount Spurr volcano, summer 1992. USGS Bull 2139:89–106

    Google Scholar 

  • Wilson L (1972) Explosive volcanic eruptions II. The atmospheric trajectories of pyroclasts. Geophys J R Astron Soc 30:381–392

    Article  Google Scholar 

  • Witter JB, Kress VC, Newhall CG (2005) Volcán Popocatépetl, Mexico. Petrology, magma mixing, and immediate sources of volatiles for the 1994–present eruption. J Petrol 46(11):2337–2366

    Article  Google Scholar 

  • Wright R, De la Cruz-Reyna S, Harris A, Flynn L, Gómez-Palacios JJ (2002) Infrared satellite monitoring at Popocatépetl: explosions, exhalations, and cycles of dome growth. J Geophys Res 107(B8):doi:10.1029/2000JB000125

    Article  Google Scholar 

  • Zobin VM, Luhr JF, Taran YA, Bretón M, Cortés A, De La Cruz-Reyna S, Domínguez T, Galindo I, Gavilanes JC, Muñíz JJ, Navarro C, Ramírez JJ, Reyes GA, Ursúa M, Velasco J, Alatorre E, Santiago H (2002) Overview of the 1997–2000 activity of Volcán de Colima, México. J Volcanol Geotherm Res 117:1–19

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to (in alphabetic order) Jerónimo Alatorre, Miguel Alatorre-Mendieta, Corrado Cimarelli, Isaac Farraz-Montes, Carlos Fernández, Alberto González-Huesca, Patricia Jácome-Paz, Patricia Julio-Miranda, Ulrich Kueppers, Yan Lavallée, Beatriz Oropeza-Villalobos, Eric Téllez, and Esther Romero-Terán for field assistance and Jonathan Hanson for his helpful comments. We also thank Ing. Roberto Quaas for allowing us the access to the video collection of CENAPRED and Lucio Cárdenas (CENAPRED) for the observation and careful selection of explosive events at Popocatépetl volcano. Financial support to the first author was provided by the Instituto de Geofísica (UNAM) and later by the IDK 31 THESIS program funded by the Elite Network of Bavaria (ENB). Hugo Delgado Granados acknowledges the support of Dirección General de Asuntos del Personal Académico (UNAM) for a research sabbatical at UC Berkeley. Donald B. Dingwell acknowledges the support of a Research Professorship (LMUexcellent) of the Bundesexzellenzinitiative and the European Research Council (ERC) Advanced Grant EVOKES (247076). This study was partially funded by the FONCICYT program (Mexican Government-European Union), grant 93645 (FIEL-VOLCAN). We are grateful to Larry Mastin, Sarah Fagents, Jeremy Phillips, and James White for their careful review and useful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Alatorre-Ibargüengoitia.

Additional information

Editorial responsibility: J.C. Phillips

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alatorre-Ibargüengoitia, M.A., Delgado-Granados, H. & Dingwell, D.B. Hazard map for volcanic ballistic impacts at Popocatépetl volcano (Mexico). Bull Volcanol 74, 2155–2169 (2012). https://doi.org/10.1007/s00445-012-0657-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-012-0657-2

Keywords

Navigation