Skip to main content
Log in

Geochemical heterogeneities and dynamics of magmas within the plumbing system of a persistently active volcano: evidence from Stromboli

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

We report here the most complete dataset for major and trace elements, as well as Sr isotopic compositions, of magmas erupted by Stromboli since the onset of present-day activity 1,800 years ago. Our data relate to both porphyritic scoria and lava originating in the uppermost parts of the feeding system, plus crystal-poor pumice produced by paroxysmal explosive eruption of deep-seated, fast ascending, magma. The geochemical variations recorded by Stromboli’s products allow us to identify changes in magma dynamics affecting the entire plumbing system. Deep-seated magmas vary in composition between two end-members having different key ratios in strongly incompatible trace elements and Sr isotopes. These features may be ascribed to mantle source processes (fluid/melt enrichment, variable degrees of melting) and occasional contamination by deep, mafic, cumulates. Temporal trends reveal three phases during which magmas with distinct geochemical signatures were erupted. The first phase occurred between the third and fourteenth centuries AD and was characterised by the eruption of evolved magmas sharing geochemical and Sr isotopic compositions similar to those of earlier periods of activity (<12 ka—Neostromboli and San Bartolo). The second phase, which began in the sixteenth century and lasted until the first half of the twentieth century, produced more primitive, less radiogenic, magmas with the lowest Ba/La and Rb/Th ratios of our dataset. The last phase is ongoing and is marked by a magma having the lowest Sr isotopic composition and highest Rb/Th ratio of the dataset. While this new magma can be clearly identified in the pumice erupted during the last two paroxysmal eruptions of 2003 and 2007, shallow degassed magma extruded during this time span records significant geochemical and isotopic heterogeneities. We thus suggest that the shallow reservoir has been only partially homogenised by this new magma influx. We conclude that compositional variations within the shallow magma system of a persistently active volcano provide only a biassed signal of ongoing geochemical changes induced by deep magma refilling. We argue that source changes can only be identified by interpreting the geochemistry of pumice, because it reliably represents magma transferred directly from deep portions of the plumbing system to the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aiuppa A, Bertagnini A, Métrich N, Moretti R, Di Muro A, Liuzzo M, Tamburello G (2010) A model of degassing for Stromboli volcano. Earth Planet Sci Lett 295(1–2):195–204

    Article  Google Scholar 

  • Albarède F (1993) Residence time analysis of geochemical fluctuations in volcanic series. Geochim Cosmochim Acta 57(3):615–621

    Article  Google Scholar 

  • Allègre CJ, Minster JF (1978) Quantitative models of trace element behavior in magmatic processes. Earth Planet Sci Lett 38:1–25

    Article  Google Scholar 

  • Arrighi S, Rosi M, Tanguy JC, Courtillot V (2004) Recent eruptive history of Stromboli (Aeolian Islands, Italy) determined from high-accuracy archeomagnetic dating. Geophys Res Lett 31(19):L19603

    Article  Google Scholar 

  • Barberi F, Rosi M, Sodi A (1993) Volcanic hazard assessment at Stromboli based on review of historical data. Acta Vulcanologica 3:173–187

    Google Scholar 

  • Bertagnini A, Métrich N, Landi P, Rosi M (2003) Stromboli volcano (Aeolian Archipelago, Italy): an open window on the deep-feeding system of a steady state basaltic volcano. J Geophys Res 108(B7): 2336.

    Google Scholar 

  • Bertagnini A, Métrich N, Francalanci L, Landi P, Tommasini S, Conticelli S (2008) Volcanology and magma geochemistry of the present-day activity: constraints on the feeding system. In: Calvari S, Inguaggiato S, Puglisi G, Ripepe M, Rosi M (eds) The Stromboli volcano: an integrated study of the 2002–2003 eruption. American Geophysical Union, Washington, pp 19–37

    Chapter  Google Scholar 

  • Bertagnini A, Di Roberto A, Pompilio M (2011) Paroxysmal activity at Stromboli: lessons from the past. Bull Volcanol. doi:10.1007/s00445-011-0470-3

  • Bonaccorso A, Cardaci C, Coltelli M, Del Carlo P, Falsaperla S, Pannucci S, Pompilio M, Villari L (1996) Volcanic activity on Stromboli in 1993. Bull Volc Erupt Supp Bull Volcanol 33:7–13

    Google Scholar 

  • Burton M, Allard P, Murè F, La Spina A (2007) Magmatic gas composition reveals the source depth of slug-driven Strombolian Explosive activity. Science 317(5835):227–230

    Article  Google Scholar 

  • Calvari S, Inguaggiato S, Puglisi G, Ripepe M, Rosi M (2008) The Stromboli volcano: an integrated study of the 2002–2003 eruption. AGU, Washington

    Book  Google Scholar 

  • Calvari S, Branca S, Corsaro R, De Beni E, Miraglia L, Norini G, Wijbrans J, Boschi E (2010) Reconstruction of the eruptive activity on the NE sector of Stromboli volcano: timing of flank eruptions since 15 ka. Bull Volcanol 73(1):101–112

    Article  Google Scholar 

  • Capaldi G, Guerra I, Lo Bascio A, Luongo G, Pace R, Rapolla A, Scarpa R, Del Pezzo E, Martini M, Ghiara R, Lirer L, Munno R, La Volpe L (1978) Stromboli and its 1975 eruption. Bull Volcanol 41(3):1–27

    Article  Google Scholar 

  • Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D (2001) Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostand Newslett 25(2–3):187–198

    Article  Google Scholar 

  • Chouet B, Dawson P, Martini M (2008) Upper conduit structure and explosion dynamics at Stromboli. In: Calvari S, Inguaggiato S, Puglisi G, Ripepe M, Rosi M (eds) The Stromboli volcano: an integrated study of the 2002–2003 eruption. AGU, Washington, pp 81–92

    Chapter  Google Scholar 

  • Clocchiatti R (1981) La transition augite diopside et les liquides silicates intra-cristalline dans les pyroclastes de l'activite actuelle du Stromboli: temioignages de la reinjection et du melange magmatiques. Bull Volcanol 44(3):339–357

    Article  Google Scholar 

  • Corsaro R, Pompilio M (2004) Magma dynamics in the shallow plumbing system of Mt. Etna as recorded by compositional variations in volcanics of recent summit activity (1995–1999). J Volcanol Geotherm Res 137(1–3):55–71

    Article  Google Scholar 

  • De Campos CP, Dingwell DB, Perugini D, Civetta L, Fehr TK (2008) Heterogeneities in magma chambers: insights from the behavior of major and minor elements during mixing experiments with natural alkaline melts. Chem Geol 256:131–145

    Article  Google Scholar 

  • De Fino M, La Volpe L, Falsaperla S, Frazzetta G, Neri G, Francalanci L, Rosi M, Sbrana A (1988) The Stromboli eruption of December 6, 1985–April 25, 1986: volcanological, petrological and seismological data. Rend SIMP 43:1021–1038

    Google Scholar 

  • Di Carlo I, Pichavant M, Rotolo SG, Scaillet B (2006) Experimental crystallization of a high-K arc basalt: the golden pumice, Stromboli volcano (Italy). J Petrol 47(7):1317–1343

    Article  Google Scholar 

  • Di Roberto A, Bertagnini A, Pompilio M, Gamberi F, Marani MP, Rosi AM (2008) Newly discovered submarine flank eruption at Stromboli volcano (Aeolian Islands, Italy). Geophys Res Lett 35(16):L16310

    Article  Google Scholar 

  • D'Oriano C, Bertagnini A, Pompilio M (2011) Ash erupted during normal activity at Stromboli (Aeolian Islands, Italy) raises questions on how the feeding system works. Bull Volcanol 73:471–477

    Google Scholar 

  • Elliott T (2003) Tracers of the slab. In: Eiler J (ed) Inside the subduction factory. AGU, Washington, DC, USA, pp 23–45

    Chapter  Google Scholar 

  • Falsaperla S, Lanzafame G, Longo V, Spampinato S (1999) Regional stress field in the area of Stromboli (Italy): insights into structural data and crustal tectonic earthquakes. J Volcanol Geotherm Res 88(3):147–166

    Article  Google Scholar 

  • Francalanci L, Barbieri M, Manetti P, Peccerillo A, Tolomeo L (1988) Sr Isotopic systematics in volcanic rocks from the island of Stromboli, Italy (Aeolian Arc). Chem Geol 73(2):109–124

    Google Scholar 

  • Francalanci L, Tommasini S, Conticelli S, Davies G (1999) Sr isotope evidence for short magma residence time for the 20th century activity at Stromboli volcano, Italy. Earth Planet Sci Lett 167(1–2):61–69

    Article  Google Scholar 

  • Francalanci L, Tommasini S, Conticelli S (2004) The volcanic activity of Stromboli in the 1906–1998 AD period: mineralogical, geochemical and isotope data relevant to the understanding of the plumbing system. J Volcanol Geotherm Res 131(1–2):179–211

    Article  Google Scholar 

  • Francalanci L, Davies G, Lustenhouwer W, Tommasini S, Mason P, Conticelli S (2005) Intra-grain Sr isotope evidence for crystal recycling and multiple magma reservoirs in the recent activity of Stromboli volcano, southern Italy. J Petrol 46(10):1997

    Article  Google Scholar 

  • Francalanci L, Bertagnini A, Metrich N, Renzulli A, Vannucci R, Landi P, Del Moro S, Menna M, Petrone CM, Nardini I (2008) Mineralogical, geochemical, and isotopic characteristics of the ejecta from the 5 April 2003 paroxysm at Stromboli, Italy: inferences on the preeruptive magma dynamics. In: Calvari S, Inguaggiato S, Puglisi G, Ripepe M, Rosi M (eds) The Stromboli volcano: an integrated study of the 2002–2003 eruption. AGU, Washington, pp 331–345

    Chapter  Google Scholar 

  • Francalanci L, Avanzinelli R, Nardini I, Tiepolo M, Davidson JP, Vannucci R (2011) Crystal recycling in the steady-state system of the active Stromboli volcano: a 2.5-ka story inferred from in situ Sr-isotope and trace element data. Contrib Mineral Petrol. doi:10.1007/s00410-011-0661-0

  • Gasparini P, Lirer L, Luongo G (1967) Caratteristiche petrochimiche e fisiche della lava emessa dallo Stromboli nell'aprile del 1967. Ann OssVes:1–24

    Google Scholar 

  • Harris A, Ripepe M (2007a) Temperature and dynamics of degassing at Stromboli. J Geophys Res 112(B3)

  • Harris A, Ripepe M (2007b) Synergy of multiple geophysical approaches to unravel explosive eruption conduit and source dynamics—a case study from Stromboli. Chem Erde 67(1):1–35

    Article  Google Scholar 

  • Harris AJL, Stevens NF, Maciejewski AJH, Rollin PJ (1996) Thermal evidence for linked vents at Stromboli. Acta Vulcanol 8:57–62

    Google Scholar 

  • Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalt—new constraints on mantle evolution. Earth Planet Sci Lett 79(1–2):33–45

    Article  Google Scholar 

  • Hornig-Kjarsgaard I, Keller J, Koberski U, Stadlbauer E, Francalanci L, Lenhart R (1993) Geology, stratigraphy and volcanological evolution of the island of Stromboli, Aeolian arc, Italy. Acta Vulcanologica 3:21–68

    Google Scholar 

  • Johnson M, Plank T (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosys 1(12):1007

    Article  Google Scholar 

  • Kazahaya K, Shinohara H, Saito G (1994) Excessive degassing of Izu-Oshima volcano: magma convection in a conduit. Bull Volcanol 56(3):207–216

    Article  Google Scholar 

  • Kessel R, Schmidt M, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727

    Article  Google Scholar 

  • Laiolo M, Cigolini C (2006) Mafic and ultramafic xenoliths in San Bartolo lava field: new insights on the ascent and storage of Stromboli magmas. Bull Volcanol 68(7–8):653–670

    Article  Google Scholar 

  • Landi P, Métrich N, Bertagnini A, Rosi M (2004) Dynamics of magma mixing and degassing recorded in plagioclase at Stromboli (Aeolian Archipelago, Italy). Contrib Mineral Petrol 147(2):213–227

    Article  Google Scholar 

  • Landi P, Francalanci L, Pompilio M, Rosi M, Corsaro RA, Petrone CM, Nardini I, Miraglia L (2006) The December 2002 July 2003 effusive event at Stromboli volcano, Italy: insights into the shallow plumbing system by petrochemical studies. J Volcanol Geotherm Res 155(3–4):263–284

    Article  Google Scholar 

  • Landi P, Metrich N, Bertagnini A, Rosi M (2008) Recycling and "re-hydration" of degassed magma inducing transient dissolution/crystallization events at Stromboli (Italy). J Volcanol Geotherm Res 174(4):325–336

    Article  Google Scholar 

  • Landi P, Corsaro RA, Francalanci L, Civetta L, Miraglia L, Pompilio M, Tesoro R (2009) Magma dynamics during the 2007 Stromboli eruption (Aeolian Islands, Italy): mineralogical, geochemical and isotopic data. J Volcanol Geotherm Res 182(3–4):255–268

    Article  Google Scholar 

  • Landi P, Marchetti E, La Felice S, Ripepe M, Rosi M (2011) Integrated petrochemical and geophysical data reveals thermal distribution of the feeding conduits at Stromboli volcano, Italy. Geophys Res Lett 38:L08305

    Article  Google Scholar 

  • Marchetti E, Ripepe M (2005) Stability of the seismic source during effusive and explosive activity at Stromboli Volcano. Geophys Res Lett 32(3):L3307

    Article  Google Scholar 

  • Marchetti E, Ripepe M, Genco R (2009) Ground deformation and seismicity related to the propagation and drainage of the dyke feeding system during the 2007 effusive eruption at Stromboli volcano (Italy). J Volcanol Geotherm Res 182:155–161

    Article  Google Scholar 

  • Métrich N, Bertagnini A, Landi P, Rosi M (2001) Crystallization driven by decompression and water loss at Stromboli volcano (Aeolian Islands, Italy). J Petrol 42(8):1471–1490

    Article  Google Scholar 

  • Métrich N, Bertagnini A, Landi P, Rosi M, Belhadj O (2005) Triggering mechanism at the origin of paroxysms at Stromboli (Aeolian Archipelago, Italy): the 5 April 2003 eruption. Geophys Res Lett 32(10):L10305

    Article  Google Scholar 

  • Métrich N, Bertagnini A, Di Muro A (2010) Conditions of magma storage, degassing and ascent at Stromboli: new insights into the volcano plumbing system with inferences on the eruptive dynamics. J Petrol 51(3):603–626

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58:63–81

    Article  Google Scholar 

  • Petrone C, Olmi F, Braschi E, Francalanci L (2006) Mineral chemistry profile: a valuable approach to unravel magma mixing processes in the recent volcanic activity of Stromboli, Italy. Per Mineral 75:277–292

    Google Scholar 

  • Petrone CM, Braschi E, Francalanci L (2009) Understanding the collapse–eruption link at Stromboli, Italy: a microanalytical study on the products of the recent Secche di Lazzaro phreatomagmatic activity. J Volcanol Geotherm Res 188(4):315–332

    Article  Google Scholar 

  • Pichavant M, Di Carlo I, Le Gac Y, Rotolo SG, Scaillet B (2009) Experimental constraints on the deep magma feeding system at Stromboli volcano. Italy J Petrol 50:601–624

    Article  Google Scholar 

  • Pichavant M, Pompilio M, D'Oriano C, Di Carlo I (2011) Petrography, mineralogy and geochemistry of a primitive pumice from Stromboli: implications for the deep feeding system. Eur J Mineral 23:499–517

    Article  Google Scholar 

  • Pietruszka AJ, Garcia MO (1999) The size and shape of Kilauea Volcano's summit magma storage reservoir: a geochemical probe. Earth Planet Sci Lett 167(3–4):311–320

    Article  Google Scholar 

  • Ponte G (1948) Attività straordinaria dello Stromboli. Ann Geofis 1:200–2002

    Google Scholar 

  • Reiners PW, Nelson BK, Ghiorso MS (1995) Assimilation of felsic crust by basaltic magma: thermal limits and extents of crustal contamination of mantle-derived magmas. Geology 23:563–566

    Article  Google Scholar 

  • Ripepe M, Marchetti E, Ulivieri G, Harris A, Dehn J, Burton M, Caltabiano T, Salerno G (2005) Effusive to explosive transition during the 2003 eruption of Stromboli volcano. Geology 33(5):341–344

    Article  Google Scholar 

  • Rittman A (1931) Der ausbruch des Stromboli am 11 September 1930. Zeitschrift für vulkanologie 14:47–77

    Google Scholar 

  • Rosi M (1980) The island of Stromboli. Rend Soc It Miner Petrol 36:1–24

    Google Scholar 

  • Rosi M, Bertagnini A, Landi P (2000) Onset of the persistent activity at Stromboli Volcano (Italy). Bull Volcanol 62:294–300

    Article  Google Scholar 

  • Scandone R, Barberi F, Rosi M (2009) The 2007 eruption of Stromboli. J Volcanol Geotherm Res 182:3–4

    Article  Google Scholar 

  • Schiavi F, Tiepolo M, Pompilio M, Vannucci R (2006) Tracking magma dynamics by laser ablation (LA)-ICPMS trace element analysis of glass in volcanic ash: the 1995 activity of Mt. Etna Geophys Res Lett 33:L05304

    Article  Google Scholar 

  • Schiavi F, Kobayashi K, Moriguti T, Nakamura E, Pompilio M, Tiepolo M, Vannucci R (2010) Degassing, crystallization and eruption dynamics at Stromboli: trace element and lithium isotopic evidence from 2003 ashes. Contrib Mineral Petrol 4:541–561

    Article  Google Scholar 

  • Sims KWW, DePaolo DJ (1997) Inferences about mantle magma sources from incompatible element concentration ratios in oceanic basalts. Geochim Cosmochim Acta 61(4):765–784

    Article  Google Scholar 

  • Smith PM, Asimow PD (2005) Adiabat_1ph: a new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochem Geophys Geosyst 6(2):1–8

    Article  Google Scholar 

  • Speranza F, Pompilio M, Sagnotti L (2004) Paleomagnetism of spatter lavas from Stromboli volcano (Aeolian Islands, Italy): implications for the age of paroxysmal eruptions. Geophys Res Lett:L02607

  • Speranza F, Pompilio M, Caracciolo FD, Sagnotti L (2008) Holocene eruptive history of the Stromboli volcano: constraints from paleomagnetic dating. J Geophys Res 113(B9): B09101

    Google Scholar 

  • Thornber C (2003) Magma-reservoir processes revealed by geochemistry of the Pu'u 'O'o-Kupaianaha eruption. USGS Prof Paper 1676:121–136

    Google Scholar 

  • Tommasini S, Heumann A, Avanzinelli R, Francalanci L (2007) The fate of high-angle dipping slabs in the subduction factory: an integrated trace element and radiogenic isotope (U, Th, Sr, Nd, Pb) study of Stromboli volcano, Aeolian Arc, Italy. J Petrol 48(12):2407–2430

    Article  Google Scholar 

  • Washington HS (1917) Persistence of vents at Stromboli and its bearing on volcanic mechanism. Geol Soc Am Bull 28:249–278

    Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231(1–2):53–72

    Article  Google Scholar 

  • Zou HB, Zindler A (1996) Constraints on the degree of dynamic partial melting and source composition using concentration ratios in magmas. Geochim Cosmochim Acta 60(4):711–717

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to Lucia Civetta and to the Istituto Nazionale di Geofisica e Vulcanologia-OV Laboratories Staff for isotopic analysis. Patrizia Pantani contributed to the preparation of figures. We are grateful to Carl Thornber for detailed constructive review and useful suggestions that helped improve the clarity of the paper. An earlier version of the manuscript was improved by comments of an anonymous reviewer. We appreciated Paula Smith suggestions for Adiabat use. We thank the Associate Editor Andrew Harris for the impeccable editorial handling and useful suggestions on the text. This work was supported by projects V2-Monitoring and research activity at Stromboli and Panarea (2004–2006 INGV-DPC agreement) and V2-Paroxysm (2007–2009 INGV-DPC agreement).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Pompilio.

Additional information

Editorial responsibility: A. Harris

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Electronic appendix: major, trace and isotopic compositions (XLS 88 kb)

Appendix A1

Appendix A1

Isenthalpic AFC modelling

A combined process of isenthalpic (heat-balanced) assimilation and crystal fractionation (AFC) has been modelled using the Adiabat software package (Smith and Asimow 2005 and cited therein). Isenthalpic AFC considers the case where the change in enthalpy of the magma is counterbalanced by the change in enthalpy of country rock, which normally is at T < <T liquidus (Reiners et al. 1995). Assumptions of this model include (1) no heat loss to rock not assimilated (2) contamination is by assimilation of country rocks. These assumptions are reasonable for Stromboli deep plumbing system and imply times of reaction and mixing faster than times of heat conduction away from the magma–country rock interface,

We selected, as starting magma composition, the less-enriched and less radiogenic LP sample (pole A—average LP composition of 5 April 2003 paroxysm) assuming a water content of 3 wt.%. Assimilate major and trace elements compositions comprise, a wherlite (sample STR 21) and a gabbro (sample STR 22) both found as enclaves in San Bartolo lavas and reported in Laiolo and Cigolini (2006). Simulations were run considering a temperature just below the liquidus (1,150°C) for the LP magmas, and assuming and initial country rock temperature of 1,000°C for both host rocks, on the basis of geothermometric evaluations of Laiolo and Cigolini (2006). Assumed pressures of magma host–rocks interaction are, respectively 300 MPa for gabbro and 800 MPa for wherlite in agreement with average geobarometric estimates of Laiolo and Cigolini (170–460 MPa for gabbro and 800–1,200 MPa for wherlite). Simulated AFC processes for gabbro and wherlite produce only precipitation of clinopyroxene. Relevant parameters as temperature change, amount of crystallisation, and compositional changes (selected major and trace elements ratios) are reported in Fig. 8 versus the amount of assimilated material. Same results are also shown in matrix diagram of Fig. 4 as vectors. The lack of Sr isotopic data for San Bartolo enclaves prevented the modelling of this parameter.

Fig. 8
figure 8

Variation of magma temperature, amount of crystallisation and melt composition related to isenthalpic AFC processes modelled with Adiabat software package (Smith and Asimow 2005 and cited therein)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pompilio, M., Bertagnini, A. & Métrich, N. Geochemical heterogeneities and dynamics of magmas within the plumbing system of a persistently active volcano: evidence from Stromboli. Bull Volcanol 74, 881–894 (2012). https://doi.org/10.1007/s00445-011-0571-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-011-0571-z

Keywords

Navigation