Skip to main content

Advertisement

Log in

Lava effusion rate definition and measurement: a review

  • Review Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Measurement of effusion rate is a primary objective for studies that model lava flow and magma system dynamics, as well as for monitoring efforts during on-going eruptions. However, its exact definition remains a source of confusion, and problems occur when comparing volume flux values that are averaged over different time periods or spatial scales, or measured using different approaches. Thus our aims are to: (1) define effusion rate terminology; and (2) assess the various measurement methods and their results. We first distinguish between instantaneous effusion rate, and time-averaged discharge rate. Eruption rate is next defined as the total volume of lava emplaced since the beginning of the eruption divided by the time since the eruption began. The ultimate extension of this is mean output rate, this being the final volume of erupted lava divided by total eruption duration. Whether these values are total values, i.e. the flux feeding all flow units across the entire flow field, or local, i.e. the flux feeding a single active unit within a flow field across which many units are active, also needs to be specified. No approach is without its problems, and all can have large error (up to ∼50%). However, good agreement between diverse approaches shows that reliable estimates can be made if each approach is applied carefully and takes into account the caveats we detail here. There are three important factors to consider and state when measuring, giving or using an effusion rate. First, the time-period over which the value was averaged; second, whether the measurement applies to the entire active flow field, or a single lava flow within that field; and third, the measurement technique and its accompanying assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allard P (1997) Endogenous magma degassing and storage at Mount Etna. Geophys Res Lett 24:2219–2222

    Google Scholar 

  • Allard P, Carbonnelle J, Metrich N, Loyer H, Zettwoog P (1994) Sulfur output and magma degassing budget of Stromboli Volcano. Nature 368:326–330

    Google Scholar 

  • Anderson SW, Stofan ER, Plaut JJ, Crown DA (1998) Block size distributions on silicic lava flow surfaces: implications for emplacement conditions. Bull Geol Soc Am 110:1258–1267

    Google Scholar 

  • Andres RJ, Kyle PR, Stokes JB, Rose WI (1989) SO2 from episode 48A eruption, Hawaii: sulfur dioxide emissions from the episode 48A East Rift zone eruption of Kilauea Volcano, Hawaii. Bull Volcanol 52:113–117

    Google Scholar 

  • Andres RJ, Rose WI, Kyle PR, deSilva S, Francis P, Gardeweg M, Moreno Roa H (1991) Excessive sulfur dioxide emissions from Chilean volcanoes. J Volcanol Geotherm Res 46:323–329

    Google Scholar 

  • Andronico D, Branca S, Calvari S, Burton M, Caltabiano T, Corsaro RA, Del Carlo P, Garfi G, Lodato L, Miragila L, Murè F, Neri M, Pecora E, Pompilio M, Salerno G, Spampinato L (2005) A multi-disciplinary study of the 2002–03 Etna eruption: insights into a complex plumbing system. Bull Volcanol 67:314–330

    Google Scholar 

  • Bailey JE, Harris AJL, Dehn J, Calvari S, Rowland SK (2006) The changing morphology of an open lava channel on Mt. Etna. Bull Volcanol 68:497–515

    Google Scholar 

  • Baloga S, Pieri D (1986) Time-dependent profiles of lava flows. J Geophys Res 91:9543–9552

    Google Scholar 

  • Baloga S, Spudis PD, Guest JE (1995) The dynamics of rapidly emplaced terrestrial lava flows and implications for planetary volcanism. J Geophys Res 100:24509–24519

    Google Scholar 

  • Barberi F, Carapezza ML, Valenza M, Villarri L (1993) The control of lava flow during the 1991–1992 eruption of Mt. Etna. J Volcanol Geotherm Res 56:1–34

    Google Scholar 

  • Barberi F, Brondi F, Carapezza ML, Cavarra L, Murgia C (2003) Earthen barriers to control lava flows in the 2001 eruption of Mt. Etna. J Volcanol Geotherm Res 123:231–243

    Google Scholar 

  • Barmin A, Melnik O, Sparks RSJ (2002) Periodic behavior in lava dome eruptions. Earth Planet Sci Lett 199:173–184

    Google Scholar 

  • Battaglia J, Aki K, Staudacher T (2005) Location of tremor sources and estimation of lava output using tremor source amplitude on the Piton de la Fournaise volcano: 2. Estimation of lava output. J Volcanol Geotherm Res 147:291–308

    Google Scholar 

  • Behncke B, Neri M (2003) The July–August 2001 eruption of Mt. Etna (Sicily). Bull Volcanol 65:461–476

    Google Scholar 

  • Bjornsson A, Saemundsson K, Einarsson P, Tryggvason E, Gronvold K (1977) Current rifting episode in north Iceland. Nature 266:318–322

    Google Scholar 

  • Blake S (1990) Viscoplastic models of lava domes. In: Fink JH (ed) Lava flows and domes. Springer, Berlin Heidelberg New York, pp 88–126

    Google Scholar 

  • Blake S, Bruno BC (2000) Modelling the emplacement of compund lava flows. Earth Planet Sci Lett 184:181–197

    Google Scholar 

  • Booth B, Self S (1973) Rheological features of the 1971 Mount Etna lavas. Phil Trans R Soc Lond 274:99–106

    Google Scholar 

  • Bozzo E, Coltelli M, Merlanti LSF, Tabacco I (1994) Geoelectromagnetic survey on the lava tube of the 1991–1993 Etna eruption. Acta Vulcanol 4:125–133

    Google Scholar 

  • Branca S, Del Carlo P (2005) Types of eruptions of Etna volcano AD 1670–2003: implications for short-term eruptive behaviour. Bull Volcanol 67:732–742

    Google Scholar 

  • Budetta G, Del Negro C (1995) Magnetic field changes on lava flow to detect lava tubes. J Volcanol Geotherm Res 65:237–248

    Google Scholar 

  • Burton MR, Neri M, Andronico D, Branca S, Caltabiano T, Calvari S, Corsaro RA, Del Carlo P, Lanzafame G, Lodato L, Miraglia L, Salerno G, Spampinato L (2005) Etna 2004–2005: an archetype for geodynamically-controlled effusive eruptions. Geophys Res Lett 32:L09303, DOI 10.1029/2005GL022527

    Google Scholar 

  • Calvari S, INGV-Catania (2001) Multidisciplinary approach yields insight into Mt. Etna 2001 eruption. EOS Trans Am Geophys Un 82:653–656

    Google Scholar 

  • Calvari S, Pinkerton H (1998) Formation of lava tubes and extensive flow field during the 1991–93 eruption of Mount Etna. J Geophys Res 103:27291–27302

    Google Scholar 

  • Calvari S, Pinkerton H (1999) Lava tube morphology on Etna and evidence for lava flow emplacement mechanisms. J Volcanol Geotherm Res 90:263–280

    Google Scholar 

  • Calvari S, Coltelli M, Neri M, Pompilio M, Scribano V (1994) The 1991–93 Etna eruption: chronology and geological observations. Acta Vulcanol 4:1–15

    Google Scholar 

  • Calvari S, Neri M, Pinkerton H (2003) Effusion rate estimations during the 1999 summit eruption on Mount Etna, and growth of two distinct lava flow fields. J Volcanol Geotherm Res 119:107–123

    Google Scholar 

  • Calvari S, Spampinato L, Lodato L, Harris AJL, Patrick MR, Dehn J, Burton MR, Andronico D (2005) Chronology and complex volcanic processes during the 2002–2003 flank eruption at Stromboli Volcano (Italy) reconstructed from direct observations and surveys with a hand-held thermal camera. J Geophys Res 110:B02201, DOI 10.1029/2004JB003129

    Google Scholar 

  • Cashman KV, Mangan MT, Newman S (1994) Surface degassing and modifications to vesicle size distributions in active basalt flows. J Volcanol Geotherm Res 61:45–68

    Google Scholar 

  • Chester DK, Duncan AM, Dibben C, Guest JE, Liste PH (1999) Mascali, Mount Etna region, Sicily: an example of Fascist planning during the 1928 eruption and its continuing legacy. Nat Haz 19:29–46

    Google Scholar 

  • Costa A, Macedonio G (2005) Numerical simulation of lava flows based on depth-averaged equations. J Geophys Res 32:L05304, DOI 10.1029/2004GL021817

    Google Scholar 

  • Crisci GM, Di Gregorio S, Rongo R, Scarpelli M, Spataro W, Calvari S (2003) Revisiting the 1669 Etnean eruptive crisis using a cellular automata model and implications for volcanic hazard in the Catania area. J Volcanol Geotherm Res 123:211–230

    Google Scholar 

  • Crisci GM, Rongo R, Di Gregorio S, Spataro W (2004) The simulation model SCIARA: the 1991 and 2001 lava flows at Mount Etna. J Volcanol Geotherm Res 132:253–267

    Google Scholar 

  • Crisp J, Baloga S (1990) A method for estimating eruption rates of planetary lava flows. Icarus 85:512–515

    Google Scholar 

  • Crisp J, Baloga S (1994) Influence of crystallization and entrainment of cooler material on the emplacement of basaltic aa lava flows. J Geophys Res 99:11819–11831

    Google Scholar 

  • Dehn J, Dean KG, Engle K, Izbekov P (2002) Thermal precursors in satellite images of the 1999 eruption of Shishaldin volcano. Bull Volcanol 64:507–519, DOI 10.1007/s00445-002-0227-0

    Google Scholar 

  • Denlinger RP (1990) A model for dome eruptions at Mount St. Helens, Washington based on subcritical crack growth. In: Fink JH (ed) Lava flows and domes. Springer, Berlin Heidelberg New York, pp 70–87

    Google Scholar 

  • Denlinger RP (1997) A dynamic balance between magma supply and eruption rate at Kilauea Volcano, Hawaii. J Geophys Res 102:18091–18100

    Google Scholar 

  • Denlinger RP, Hoblitt RP (1999) Cyclic eruptive behavior of silicic volcanoes. Geology 27:459–462

    Google Scholar 

  • Devine JD, Sigurdsson H, Davies AN, Self S (1984) Estimates of sulfur and chlorine yield to the atmosphere from volcanic eruptions and potential climatic effects. J Geophys Res 89:6309–6325

    Google Scholar 

  • Dozier JA (1981) A method for satellite identification of surface temperature fields of subsurface resolution. Rem Sens Environ 11:221–229

    Google Scholar 

  • Dragoni M (1989) A dynamical model of lava flows cooling by radiation. Bull Volcanol 51:88–95

    Google Scholar 

  • Dragoni M, Tallarico A (1994) The effect of crystallization on the rheology and dynamics of lava flows. J Volcanol Geotherm Res 59:241–252

    Google Scholar 

  • Dragoni M, Bonafede M, Boschi E (1986) Downslope flow models of a Bingham liquid: implications for lava flows. J Volcanol Geotherm Res 30:305–325

    Google Scholar 

  • Dragoni M, Pondrelli S, Tallarico A (1992) Longitudinal deformation of a lava flow: the influence of Bingham rheology. J Volcanol Geotherm Res 52:247–254

    Google Scholar 

  • Duncan AM, Dibben C, Chester DK, Guest JE (1996) The 1928 eruption of Mount Etna Volcano, Sicily, and the destruction of the town of Mascali. Disasters 20:1–20

    Google Scholar 

  • Dvorak JJ, Dzurisin D (1993) Variations in magma supply rate at Kilauea Volcano, Hawaii. J Geophys Res 98:22255–22268

    Google Scholar 

  • Dzurisin D, Koyanagi RY, English TT (1984) Magma supply and storage at Kilauea Volcano, Hawaii. J Volcanol Geotherm Res 21:177–206

    Google Scholar 

  • Favalli M, Pareschi MT, Neri A, Isola I (2005) Forecasting lava flow paths by a stochastic approach. Geophys Res Lett 32:L03305, DOI 10.1029/2004GL021718

    Google Scholar 

  • Fink JH (1993) The emplacement of silicic lava flows and associated hazards. In: Kilburn CRJ, Luongo G (eds) Active lavas. UCL Press, London, pp 5–24

    Google Scholar 

  • Fink JH, Bridges NT (1995) Effects of eruption history and cooling rate on lava dome growth. Bull Volcanol 57:229–239

    Article  Google Scholar 

  • Fink JH, Griffiths RW (1992) A laboratory analog study of the surface morphology of lava flows extruded from point and line sources. J Volcanol Geotherm Res 54:19–32

    Google Scholar 

  • Fink JH, Griffiths RW (1998) Morphology, eruption rates, and rheology of lava domes: insights from laboratory models. J Geophys Res 103:527–545

    Google Scholar 

  • Fink JH, Malin MC, Anderson SW (1990) Intrusive and extrusive growth of the Mount St Helens lava dome. Nature 348:435–437

    Google Scholar 

  • Francis P, Oppenheimer C, Stevenson D (1993) Endogenous growth of persistently active volcanoes. Nature 366:554–557

    Google Scholar 

  • Frazzetta G, Romano R (1984) The 1983 Etna eruption: event chronology and morphological evolution of the lava flow. Bull Volcanol 47:1079–1096

    Google Scholar 

  • Fukushima Y, Cayol V, Durand P (2005) Finding realistic models for interferometric synthetic aperture radar data: the February 2000 eruption at Piton de la Fournaise. J Geophys Res 110:B03206, DOI 10.1029/2004JB003268

    Google Scholar 

  • Gaonac’h H, Stix J, Lovejoy S (1996) Scaling effects on vesicle shape, size and heterogeneity of lavas from Mount Etna. J Volcanol Geotherm Res 74:131–153

    Google Scholar 

  • Glaze JA (1984) Rates of magma emplacement and volcanic output. J Volcanol Geotherm Res 20:177–211

    Google Scholar 

  • Glaze LS, Baloga SM (2001) User’s manual for lava flow path prediction algorithm. Proxemy Research, Laytonsville

    Google Scholar 

  • Glaze LS, Anderson SW, Stofan ER, Baloga S, Smrekar SE (2005) Statistical distribution of tumuli on pahoehoe flow surfaces: analysis of examples in Hawaii and Iceland and potential applications to lava flows on Mars. J Geophys Res 110:B08202, DOI 10.1029/2004JB003564

    Google Scholar 

  • Greeley R (1987) The role of lava tubes in Hawaiian volcanoes. US Geol Surv Prof Pap 1350:1589–1602

    Google Scholar 

  • Greenland LP, Okamura AT, Stokes JB (1988) Constraints on the mechanics of the eruption. US Geol Surv Prof Pap 1463:155–164

    Google Scholar 

  • Gregg TKP, Fink JH (2000) A laboratory investigation into the effects of slope on lava flow morphology. J Volcanol Geotherm Res 96:145–149

    Google Scholar 

  • Griffiths RW, Fink JH (1992) Solidification and morphology of submarine lavas: a dependence on extrusion rate. J Geophys Res 97:19729–19737

    Google Scholar 

  • Guest JE, Murray JB (1979) An analysis of hazard from Mount Etna volcano. Geol Soc London Mem 136:347–354

    Google Scholar 

  • Guest JE, Wood C, Greeley R (1984) Lava tubes, terraces and megatumuli on the 1614–24 Pahoehoe lava flow field, Mount Etna, Sicily. Bull Volcanol 47:635–648

    Google Scholar 

  • Guest JE, Kilburn CRJ, Pinkerton H, Duncan AM (1987) The evolution of lava flow-fields: observations of the 1981 and 1983 eruptions of Mount Etna, Sicily. Bull Volcanol 49:527–540

    Google Scholar 

  • Guest JE, Spudis PD, Greeley R, Taylor GJ, Baloga SM (1995) Emplacement of xenolith nodules in the Kaupulehu lava flow, Hualalai Volcano, Hawaii. Bull Volcanol 57:179–184

    Google Scholar 

  • Harris AJL, Neri M (2002) Volumetric observations during paroxysmal eruptions at Mount Etna: pressurized drainage of a shallow chamber or pulsed supply? J Volcanol Geotherm Res 116:79–95

    Google Scholar 

  • Harris AJL, Rowland SK (2001) FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel. Bull Volcanol 63:20–44

    Google Scholar 

  • Harris AJL, Stevenson DS (1997) Magma budgets and steady-state activity of Vulcano and Stromboli Volcanoes. Geophys Res Lett 24:1043–1046

    Google Scholar 

  • Harris AJL, Blake S, Rothery DA, Stevens NF (1997a) A chronology of the 1991 to 1993 Mount Etna eruption using advanced very high resolution radiometer data: implications for real-time thermal volcano monitoring. Geophys Res Lett 102:7985–8003

    Google Scholar 

  • Harris AJL, Butterworth AL, Carlton RW, Downey I, Miller P, Navarro P, Rothery DA (1997b) Low-cost volcano surveillance from space: case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus. Bull Volcanol 59:49–64

    Google Scholar 

  • Harris AJL, Flynn LP, Keszthelyi L, Mouginis-Mark PJ, Rowland SK, Resing JA (1998) Calculation of lava effusion rates from Landsat TM data. Bull Volcanol 60:52–71

    Google Scholar 

  • Harris AJL, Flynn LP, Rothery DA, Oppenheimer C, Sherman SB (1999a) Mass flux measurements at active lava lakes: implications for magma recycling. J Geophys Res 104:7117–7136

    Google Scholar 

  • Harris AJL, Wright R, Flynn LP (1999b) Remote monitoring of Mount Erebus volcano, Antarctica, using polar orbiters: progress and prospects. Int J Remote Sens 20:3051–3071

    Google Scholar 

  • Harris AJL, Murray JB, Aries SE, Davies MA, Flynn LP, Wooster MJ, Wright R, Rothery DA (2000) Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms. J Volcanol Geotherm Res 102:237–270

    Google Scholar 

  • Harris AJL, Flynn LP, Matías O, Rose WI (2002) The thermal stealth flows of Santiaguito: implications for the cooling and emplacement of dacitic block lava flows. Geol Soc Am Bull 114:533–546

    Google Scholar 

  • Harris AJL, Rose WI, Flynn LP (2003) Temporal trends in lava dome extrusion at Santiaguito 1922–2000. Bull Volcanol 65:77–89

    Google Scholar 

  • Harris AJL, Flynn LP, Matias O, Rose WI, Cornejo J (2004) The evolution of an active silicic lava flow field: an ETM+ perspective. J Volcanol Geotherm Res 135:147–168

    Google Scholar 

  • Harris A, Bailey J, Calvari S, Dehn J (2005) Heat loss measured at a lava channel and its implications for down-channel cooling and rheology. Geol Soc Am Spec Pap 396:125–146

    Google Scholar 

  • Harris AJL, Dehn J, Patrick MR, Calvari S, Ripepe M, Lodato L (2006) Lava effusion rates from hand-held thermal infrared imagery: an example from the June 2003 effusive activity at Stromboli. Bull Volcanol 68(2):107–117

    Google Scholar 

  • Herd RA, Pinkerton H (1997) Bubble coalesence in basaltic lava: its impact on the evolution of bubble populations. J Volcanol Geotherm Res 75:137–157

    Google Scholar 

  • Heslop SE, Wilson L, Pinkerton H, Head III JW (1989) Dynamics of a confined lava flow on Kilauea volcano, Hawaii. Bull Volcanol 51:415–432

    Google Scholar 

  • Hikada M, Goto A, Umino S, Fujita E (2005) VFTS project: development of the lava flow simulation code LavaSIM with a model for three-dimensional convection, spreading, and solidification. Geochem Geophys Geosys 6:Q07008, DOI 10.1029/2004GC000896

    Google Scholar 

  • Hon K, Kauahikaua J, Denlinger R, Mackay K (1994) Emplacement and inflation of Pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol Soc Am Bull 106:351–370

    Google Scholar 

  • Ishihara K, Iguchi M, Kamo K (1990) Numerical simulation of lava flows on some volcanoes in Japan. In: Fink JH (ed) Lava flows and domes. Springer, Berlin Heidelberg New York, pp 174–207

    Google Scholar 

  • Iverson RM (1990) Lava domes modelled as brittle shells that enclose pressurized magma, with application to Mount St. Helens. In: Fink JH (ed) Lava flows and domes. Springer, Berlin Heidelberg New York, pp 47–69

    Google Scholar 

  • Jackson DB, Swanson DA, Koyanagi RY, Wright TL (1975) The August and October 1968 east rift eruptions of Kilauea Volcano, Hawaii. US Geol Surv Prof Pap 890:1–33

    Google Scholar 

  • Jackson DB, Hort MKG, Hon K, Kauahikaua J (1987) Detection and mapping of active lava tubes using the VLF induction technique, Kilauea Volcano, Hawaii. EOS Trans Am Geophys Union 68:1543

    Google Scholar 

  • Jeffreys H (1925) Flow of water in an inclined channel of rectangular section. Phil Mag J Sci 49:793–807

    Article  Google Scholar 

  • Jurado-Chichay Z, Rowland SK (1995) Channel overflows of the Pohue Bay flow, Mauna Loa, Hawai’i: examples of the contrast between surface and interior lava. Bull Volcanol 57:117–126

    Google Scholar 

  • Kauahikaua J, Mangan M, Heliker C, Mattox T (1996) A quantitative look at the demise of a basaltic vent: the death of Kupaianaha, Kilauea Volcano, Hawai’i. Bull Volcanol 57:641–648

    Google Scholar 

  • Kauahikaua J, Cashman KV, Mattox TN, Heliker CC, Hon KA, Mangan MT, Thornber CR (1998) Observations of basaltic lava streams in tubes from Kilauea volcano, Island of Hawaii. J Geophys Res 103:27303–27323

    Google Scholar 

  • Kauahikaua J, Cashman KV, Clague DA, Champion D, Hagstrum JT (2002) Emplacement of the most recent lava flows on Hualalai Volcano, Hawai’i. Bull Volcanol 64:229–253

    Google Scholar 

  • Kauahikaua J, Sherrod DR, Cashman KV, Heliker C, Hon K, Mattox TN, Johnson JA (2003) Hawaiian lava-flow dynamics during the Pu’u ’O’o—Kupaianaha eruption: a tale of two decades. US Geol Surv Prof Pap 1676:63–87

    Google Scholar 

  • Kazahaya K, Shinohara H, Saito G (1994) Excessive degassing of Izu-Oshima Volcano: magma convection in a conduit. Bull Volcanol 56:207–216

    Google Scholar 

  • Kerr RC (2001) Thermal erosion by laminar lava flows. J Geophys Res 106:26453–26466

    Google Scholar 

  • Keszthelyi L (1995) A preliminary thermal budget for lava tubes on the Earth and planets. J Geophys Res 100:20411–20420

    Google Scholar 

  • Keszthelyi L, Self S (1998) Some physical requirements for the emplacement of long basaltic lava flows. J Geophys Res 103:27447–27464

    Google Scholar 

  • Keszthelyi L, McEwen AS, Thordason T (2000) Terrestrial analogs and thermal models for Martian flood lavas. J Geophys Res 105:15027–15049

    Google Scholar 

  • Kilburn CRJ (1996) Patterns and unpredictability in the emplacement of subaerial lava flows and flow fields. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcanic hazards. Springer, Berlin Heidelberg New York, pp 491–537

    Google Scholar 

  • Kilburn CRJ (2000) Lava flows and flow fields. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 291–305

    Google Scholar 

  • Kilburn CRJ (2004) Fracturing as a quantitative indicator of lava flow dynamics. J Volcanol Geotherm Res 132:209–224

    Google Scholar 

  • Kilburn CRJ, Lopes RMC (1988) The growth of aa lava fields on Mount Etna, Sicily. J Geophys Res 93:14759–14772

    Google Scholar 

  • Kilburn CRJ, Pinkerton H, Wilson L (1995) Forecasting the behaviour of lava flows. In: McGuire B, Kilburn CRJ, Murray J (eds) Monitoring active volcanoes. UCL, London, pp 346–368

    Google Scholar 

  • Lautze NC, Harris AJL, Bailey JE, Ripepe M, Calvari S, Dehn J, Rowland S, Evans-Jones K (2004) Pulsed lava effusion at Mount Etna during 2001. J Volcanol Geotherm Res 137:231–246

    Google Scholar 

  • Lipman PW, Banks NG (1987) Aa flow dynamics, Mauna Loa 1984. US Geol Surv Prof Pap 1350:1527–1567

    Google Scholar 

  • Lu Z, Masterlark T, Dzurisin D (2005) Interferometric synthetic aperture radar study of Okmok Volcano, Alaska, 1992–2003: magma supply dynamics and postemplacement lava flow deformation. J Geophys Res 1103:B02403, DOI 10.1029/2004JB003148

    Google Scholar 

  • Macedonio G, Longo A (1999) Lava flow in a channel with a bifurcation. Phys Chem Earth 24:953–956

    Google Scholar 

  • Madeira J, da Silveira B, Torres PC (1996) Contradicao aparente entre os volumes finais dos derrames e a estimacao das taxas de efusao: o caso da erupcao do Fogo de 1995. Simposio Internacional sobre a erupcao vulcanica de 1995 na ilha do Fogo, Cabo Verde, Lisboa, 1995:153–163

  • Malin MC (1980) Lengths of Hawaiian lava flows. Geology 8:306–308

    Google Scholar 

  • Massonnet D, Briole P, Arnaud A (1995) Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature 375:567–570

    Google Scholar 

  • Matson M, Dozier J (1981) Identification of subresolution high temperature sources using a thermal IR sensor. Photogramm Eng Remote Sensing 47:1311–1318

    Google Scholar 

  • Mattox TN, Heliker C, Kauahikaua J, Hon K (1993) Development of the 1990 Kalapana flow field, Kilauea Volcano, Hawaii. Bull Volcanol 55:407–413

    Google Scholar 

  • Mattsson HB, Höskuldsson A (2005) Eruption reconstruction, formation of flow-lobe tumuli and eruption duration of the 5900 BP Helgafell lava field (Heimaey), South Iceland. J Volcanol Geotherm Res 147:157–172

    Google Scholar 

  • Mayamoto H, Sasaki S (1998) Numerical simulations of flood basalt lava flows: roles of parameters on lava flow morphologies. J Geophys Res 103:27489–27502

    Google Scholar 

  • Mazzarini F, Pareschi MT, Favalli M, Isola I, Tarquini S, Boschi E (2005) Morphology of basaltic lava channels during the Mt. Etna September 2004 eruption from airborne laser altimeter data. Geophys Res Lett 32:L04305. DOI 10.1029/2004GL021815

    Google Scholar 

  • McClelland L, Simkin T, Summers M, Nielsen E, Stein TC (1989) Global volcanism 1975–1985. Prentice-Hall, New Jersey

    Google Scholar 

  • Melnik O, Sparks RSJ (1999) Nonlinear dynamics of lava dome extrusion. Nature 402:37–41

    Google Scholar 

  • Melnik O, Sparks RSJ (2005) Controls on conduit magma flow dynamics during lava dome building eruptions. Geophys Res Lett 110:B02209. DOI 10.1029/2004JB003183

    Google Scholar 

  • Miyamoto H, Haruyama J, Kobayashi T, Suzuki K, Okada T, Nishibori T, Showman R, Lorenz AP, Mogi K, Crown DA, Rodriguez JAP, Rokugawa S, Tokunaga T, Maumoto K (2005) Mapping the structure and depth of lava tubes using ground penetrating radar. Geophys Res Lett 32:L21316. DOI 10.1029/2005GL024159

    Google Scholar 

  • Moore HJ (1987) Preliminary estimates of the rheological properties of 1984 Mauna Loa lava. US Geol Surv Prof Pap 1350:1569–1588

    Google Scholar 

  • Murray JB, Stevens NF (2000) New formulae for estimating lava flow volumes at Mt. Etna Volcano, Sicily. Bull Volcanol 61:515–526

    Google Scholar 

  • Nakada S, Fujii T (1993) Preliminary report on the activity at Unzen Volcano (Japan), November 1990–November 1991: dacite lava domes and pyroclastic flows. J Volcanol Geotherm Res 54:319–333

    Google Scholar 

  • Nakada S, Miyake Y, Sato H, Oshima O, Fujinawa A (1995) Endogenous growth of dacite dome at Unzen Volcano (Japan), 1993–1994. Geology 23:157–160

    Google Scholar 

  • Nakada S, Shimizu H, Ohta K (1999) Overview of the 1990–1995 eruption at Unzen. J Volcanol Geotherm Res 89:1–22

    Google Scholar 

  • Naumann T, Geist D (2000) Physical volcanology and structural development of Cerro Azul Volcano, Isabela Island, Galapagos: implications for the development of Galapagos-style shield volcanoes. Bull Volcanol 61:497–514

    Google Scholar 

  • Nichols RL (1936) Flow-units in basalt. J Geol 44:617–630

    Google Scholar 

  • Oddone E (1910) L’eruzione Etnea del Marzo–Aprile 1910. Boll Soc Sismol Ital 14:143–176

    Google Scholar 

  • Ollier CD (1964) Tumuli and lava blisters of Victoria, Australia. Nature 202:1284–1286

    Google Scholar 

  • Oppenheimer C (1991) Lava flow cooling estimated from Landsat Thematic Mapper infrared data: the Lonquimay eruption (Chile, 1989). J Geophys Res 96:21865–21878

    Google Scholar 

  • Oppenheimer C, Francis PW, Rothery DA, Carlton RWT, Glaze LS (1993) Infrared image analysis of volcanic thermal features: Lascar Volcano, Chile, 1984–1992. J Geophys Res 98:4269–4286

    Google Scholar 

  • Patrick MR, Dehn J, Papp KR, Lu Z, Dean K, Moxey L, Izbekov P, Guritz R (2003) The 1997 eruption of Okmok Volcano, Alaska: a synthesis of remotely sensed imagery. J Volcanol Geotherm Res 127:87–105

    Google Scholar 

  • Peterson DW, Holcomb RT, Tilling RI, Christiansen RL (1994) Development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii. Bull Volcanol 56:343–360

    Google Scholar 

  • Pieri DC, Baloga SM (1986) Eruption rate, area, and length relationships for some Hawaiian lava flows. J Volcanol Geotherm Res 30:29–45

    Google Scholar 

  • Pinkerton H (1993) Measuring the properties of flowing lavas. In: Kilburn CRJ, Luongo G (eds) Active lavas. UCL Press, London, pp 175–191

    Google Scholar 

  • Pinkerton H, Sparks RSJ (1976) The 1975 subterminal lavas, Mount Etna: a case history of the formation of a compound lava field. J Volcanol Geotherm Res 1:167–182

    Google Scholar 

  • Pinkerton H, Wilson L (1994) Factors affecting the lengths of channel-fed lava flows. Bull Volcanol 56:108–120

    Google Scholar 

  • Richter DH, Eaton JP, Murata KJ, Ault WU, Krivoy HL (1970) Chronological narrative of the 1959–60 eruption of Kilauea Volcano, Hawaii. US Geol Surv Prof Pap 537:1–73

    Google Scholar 

  • Ripepe M, Marchetti M, Ulivieri G, Harris A, Dehn J, Burton M, Caltabiano T, Salerno G (2005) Effusive to explosive transition during the 2003 eruption of Stromboli volcano. Geology 33:341–344

    Google Scholar 

  • Romano R, Sturiale C (1982) The historical eruptions of Mt. Etna. Mem Soc Geol Ital 23:75–97

    Google Scholar 

  • Rose WI (1972) Pattern and mechanism of volcanic activity at the Santiaguito volcanic dome, Guatemala. Bull Volcanol 36:73–94

    Google Scholar 

  • Rossi MJ (1997) Morphology of the 1984 open-channel lava flow at Krafla Volcano, Northern Iceland. Geomorphol 20:95–112

    Google Scholar 

  • Rossi MJ, Gudmundsson A (1996) The morphology and formation of flow-lobe tumuli on Icelandic shield volcanoes. J Volcanol Geotherm Res 72:291–308

    Google Scholar 

  • Rothery DA, Francis PW, Wood CA (1988) Volcano monitoring using short wavelength infrared data from satellites. J Geophys Res 93:7992–8008

    Google Scholar 

  • Rowland SK (1996) Slopes, lava flow volumes, and vent distributions on Volcan Fernandina, Galapagos Islands. J Geophys Res 101:27657–27672

    Google Scholar 

  • Rowland SK, Munro DC (1993) The 1919–1920 eruption of Mauna Iki, Kilauea: chronology, geologic mapping, and magma transport mechanisms. Bull Volcanol 55:190–203

    Google Scholar 

  • Rowland SK, Walker GPL (1990) Pahoehoe and aa in Hawaii: volumetric flow rate controls the lava structure. Bull Volcanol 52:615–628

    Google Scholar 

  • Rowland SK, MacKay ME, Garbeil H, Mouginis-Mark PJ (1999) Topographic analyses of Kilauea Volcano, Hawai’i, from interferometric airborne radar. Bull Volcanol 61:1–14

    Google Scholar 

  • Rowland SK, Harris AJL, Wooster MJ, Amelung F, Garbeil H, Wilson L, Mouginis-Mark PJ (2003) Volumetric characteristics of lava flows from interferometric radar and multispectral satellite data. Bull Volcanol 65:311–330

    Google Scholar 

  • Rowland SK, Harris AJL, Garbeil H (2004) Effects of Martian conditions on numerically modeled, cooling-limited, channelized lava flows. J Geophys Res 109:E10010. DOI 10.1029/2004JE002288

    Google Scholar 

  • Rowland SK, Garbiel H, Harris AJL (2005) Lengths and hazards from channel-fed lava flows on Mauna Loa, Hawai’i, determined from thermal and downslope modeling with FLOWGO. Bull Volcanol 67:634–647

    Google Scholar 

  • Sakimoto SEH, Zuber MT (1998) Flow and convective cooling in lava tubes. J Geophys Res103:27465–27487

    Google Scholar 

  • Schwarz C (1993) The Chambers dictionary. Chambers Harrap, Edinburgh

    Google Scholar 

  • Self S, Thordarson T, Keszthelyi L, Walker GPL, Hon K, Murphy MT, Long P, Finnemore S (1996) A new model for the emplacement of Columbia River Basalt as large, inflated Pahoehoe lava flow fields. J Geophys Res 23:2689–2692

    Google Scholar 

  • Self S, Thordarson T, Keszthelyi L (1997) Emplacement of continental flood basalt lava flows. Am Geophys Union Monograph 100:381–410

    Google Scholar 

  • Smith SJ (2005) Chronologic multisensor assessment for Mount Cleveland, Alaska from 2000 to 2004 focusing on the 2001 eruption. MS thesis, University of Alaska, Fairbanks

  • Soule SA, Cashman KV, Kauahikaua JP (2004) Examining flow emplacement through the surface morphology of three rapidly emplaced, solidified lava flows, Kilauea Volcano, Hawai’i. Bull Volcanol 66:1–14

    Google Scholar 

  • Soule SA, Fornari DJ, Perfit MR, Tivey MA, Ridley WI, Schouten H (2005) Channelized lava flows at the East Pacific Rise crest 9°–10°N: the importance of off-axis lava transport in developing the architecture of young oceanic crust. Geochem Geophys Geosys 6:Q08005. DOI 10.1029/2005GC00912

    Google Scholar 

  • Sparks RSJ, Young SR, Barclay J, Calder ES, Cole P, Darroux B, Davies MA, Druitt TH, Harford C, Herd R, James M, Lejeune AM, Loughlin S, Norton G, Skerrit G, Stasiuk MV, Stevens NS, Toothill J, Wadge G, Watts R (1998) Magma production and growth of the lava dome of the Soufriere Hills Volcano, Monsterrat, West Indies: November 1995 to December 1997. Geophys Res Lett 25:3421–3424

    Google Scholar 

  • Stasiuk MV, Jaupart C (1997) Lava flow shapes and dimensions as reflections of magma system conditions. J Volcanol Geotherm Res 78:31–50

    Google Scholar 

  • Steffke AM (2005) Temperatures, thermal fluxes and effusion rates associated with the growth of Bezymianny volcano using spaceborne thermal infrared data. MS Thesis, University of Alaska, Fairbanks

  • Stevens NF, Murray JB, Wadge G (1997) The volume and shape of the 1991–1993 lava flow field at Mount Etna, Sicily. Bull Volcanol 58:449–454

    Google Scholar 

  • Stevens NF, Wadge G, Murray JB (1999) Lava flow volume and morphology from digitised contour maps: a case study from Mount Etna, Sicily. Geomorphol 28:251–261

    Google Scholar 

  • Stoiber RE, Williams SN, Huebert BJ (1986) Sulfur and halogen gases at Masaya caldera complex, Nicaragua: total flux and variations with time. J Geophys Res 91:12215–12231

    Google Scholar 

  • Sutton AJ, Elias T, Gerlach TM, Stokes JB (2001) Implications for eruptive processes as indicated by sulfur dioxide emissions from Kilauea Volcano, Hawai’i, 1979–1997. J Volcanol Geotherm Res 108:283–302

    Google Scholar 

  • Sutton AJ, Elias T, Kauahikaua J (2003) Lava-effusion rates for the Pu’u ’O’o–Kupaianaha eruption derived from SO2 emissions and very low frequency (VLF) measurements. US Geol Surv Prof Pap 1676:137–148

    Google Scholar 

  • Swanson DA, Holcomb RT (1990) Regularities in growth of the Mount St. Helens dacite dome, 1980–1986. In: Fink JH (ed) Lava flows and domes. Springer, Berlin Heidelberg New York, pp 3–24

    Google Scholar 

  • Swanson DA, Duffield WA, Jackson DB, Peterson DW (1979) Chronological narrative of the 1969–71 Mauna Ulu eruption of Kilauea volcano, Hawaii. US Geol Surv Prof Pap 1056:1–55

    Google Scholar 

  • Tallarico A, Dragoni M (1999) Viscous Newtonian laminar flow in a rectangular channel: application to Etna lava flows. Bull Volcanol 61:40–47

    Google Scholar 

  • Tanguy JC, Kieffer G, Pantanè G (1996) Dynamics, lava volume and effusion rate during the 1991–1993 eruption of Mount Etna. J Volcanol Geotherm Res 71:259–265

    Google Scholar 

  • Thordason T, Self S (1996) Sulfur, chlorine and fluorine degassing and atmospheric loading by the Roza eruption, Columbia River Basalt Group, Washington, USA. J Volcanol Geotherm Res 74:49–73

    Google Scholar 

  • Thordason T, Self S (1998) The Roza member, Columbia River Basalt Group: a gigantic Pahoehoe lava flow field formed by endogenous processes? J Geophys Res 103:21411–27445

    Google Scholar 

  • Tilling RI (1987) Fluctuations in surface height of active lava lakes during the 1972–1974 Mauna Ulu eruption, Kilauea Volcano, Hawaii. J Geophys Res 92:13721–13730

    Google Scholar 

  • Tilling RI, Peterson DW (1993) Field observations of active lava in Hawaii: some practical considerations. In: Kilburn CRJ, Luongo G (eds) Active lavas. UCL Press, London, pp 147–174

    Google Scholar 

  • Tilling RI, Christansen RL, Duffield WA, Endo ET, Holcomb RT, Koyanagi RY, Peterson DW, Unger JD (1987) The 1972–1974 Mauna Ulu eruption, Kilauea Volcano: an example of quasi-steady-state magma transfer. US Geol Surv Prof Pap 1350:405–469

    Google Scholar 

  • Tryggvason E (1986) Multiple magma reservoirs in a rift zone volcano: ground deformation and magma transport during the September 1984 eruption of Krafla, Iceland. J Volcanol Geotherm Res 28:1–44

    Google Scholar 

  • Wadge G (1977) The storage and release of magma on Mount Etna. J Volcanol Geotherm Res 2:361–384

    Google Scholar 

  • Wadge G (1978) Effusion rate and the shape of aa lava flow-fields on Mount Etna. Geology 6:503–506

    Google Scholar 

  • Wadge G (1981) The variation of magma discharge during basaltic eruptions. J Volcanol Geotherm Res 11:139–168

    Google Scholar 

  • Wadge G (1982) Steady state volcanism: evidence from eruption histories of polygenetic volcanoes. J Geophys Res 87:4035–4049

    Article  Google Scholar 

  • Wadge G (1983) The magma budget of Volcan Arenal, Costa Rica from 1968 to 1980. J Volcanol Geotherm Res 19:281–302

    Google Scholar 

  • Wadge G, Walker GPL, Guest JE (1975) The output of the Etna volcano. Nature 255:385–387

    Google Scholar 

  • Wadge G, Young PAV, McKendrick IJ (1994) Mapping lava flow hazards using computer simulation. J Geophys Res 99:489–504

    Google Scholar 

  • Walker GPL (1973) Lengths of lava flows. Phil Trans R Soc Lond 274:107–118

    Google Scholar 

  • Walker GPL (1991) Structure, and origin by injection of lava under surface crust, of tumuli, “lava rises,” “lava-rise pits,” and “lava-inflation clefts” in Hawaii. Bull Volcanol 53:546–558

    Google Scholar 

  • Wilmoth RA, Walker GPL (1993) P-type and S-type pahoehoe: a study of vesicle distribution patterns in Hawaiian lava flows. J Volcanol Geotherm Res 55:129–142

    Google Scholar 

  • Wolfe EW, Neal CA, Banks NG, Duggan TJ (1988) Geological observations and chronology of eruptive events. US Geol Surv Prof Pap 1463:1–97

    Google Scholar 

  • Woodcock D, Harris AJL (2005) The dynamics of a channel-fed lava flow on Pico Partido Volcano, Lanzarote: evidence for a hydraulic jump? Bull Volcanol 69:207–215

    Google Scholar 

  • Wright R, Blake S, Harris AJL, Rothery DA (2001a) A simple explanation for the space-based calculation of lava eruption rates. Earth Planet Sci Lett 192:223–233

    Google Scholar 

  • Wright R, Flynn LP, Harris AJL (2001b) The evolution of lava flow-fields at Mount Etna, 27–28 October 1999, observed by Landsat 7 ETM+. Bull Volcanol 63:1–7

    Google Scholar 

  • Young P, Wadge G (1990) FLOWFRONT: simulation of a lava flow. Comp Geosci 16:1171–1191

    Google Scholar 

  • Zebker HA, Rosen P, Hensely S, Mouginis-Mark PJ (1996) Analysis of active lava flows on Kilauea Volcano, Hawaii, using SIR-C radar correlation measurements. Geology 24:495–498

    Google Scholar 

Download references

Acknowledgements

This paper benefited of the many discussions throughout the years with Harry Pinkerton and John Guest, and was stimulated by the many questions raised by Franco Barberi. The manuscript benefited from reviews by Dave Rothery and Lionel Wilson, as well as by Lucia Gurioli. Alessandro Bonaccorso, INGV-CT Director, is thanked for having supported and funded this research. Additional support for AJLH came from NASA Grant NNG04G064G “New Tools for Advanced Hot-Spot Tracking Using MODIS Thermal Alerts”. Support for JD was provided through the Alaska Volcano Observatory and a grant from the United States Geological Survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. L. Harris.

Additional information

Editorial responsibility: C Kilburn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, A.J.L., Dehn, J. & Calvari, S. Lava effusion rate definition and measurement: a review. Bull Volcanol 70, 1–22 (2007). https://doi.org/10.1007/s00445-007-0120-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-007-0120-y

Keywords

Navigation