Skip to main content
Log in

Characterization of respirable volcanic ash from the Soufrière Hills volcano, Montserrat, with implications for human health hazards

Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Volcanic ash, generated in the long-lived eruption of the Soufrière Hills volcano, Montserrat, is shown to contain respirable (sub-4 μm) particles and cristobalite, a crystalline silica polymorph. Respirable particles of cristobalite can cause silicosis, raising the possibility that volcanic ash is a respiratory health hazard. This study considers some of the main factors which affect human exposure to respirable volcanic ash, namely, the composition and proportions of respirable ash, and the composition and concentrations of airborne suspended particulates. The composition, size distribution and proportion (by weight) of respirable particles in representative samples of the Soufrière Hills tephra (dome-collapse ash-fall deposits, dome-collapse pyroclastic-flow matrix, Vulcanian explosion ash and mixed ash) have been characterized. Dome-collapse ash-fall deposits are significantly richer in respirable particles (12 wt%) than the other tephra samples, in particular the matrices of dome-collapse pyroclastic-flow deposits (3 wt%). Within the respirable fraction, dome-collapse ash contains the highest proportion of crystalline silica particles (20–27 number%, of which 97 wt% is cristobalite), compared with other primary tephra types (0.4–5.6 number%). This enrichment of crystalline silica in the dome-collapse ash is most pronounced in the very fine particle fraction (sub-2 μm). The results are explained as being due to significant size fractionation during fragmentation of pyroclastic flows, resulting in a fines-depleted dome-collapse matrix and a fines-rich dome-collapse ash deposit. For all sample types, the sub-4 μm fraction comprises 45–55 wt% of the sub-10 μm fraction. Aeolian deposit, lahar deposit and airborne samples of suspended ash, collected on filters, were characterized. These samples show enrichment of crystalline silica in the respirable fraction (10–18 number%). The results are consistent with ash in the environment having a mixed origin but originating predominantly from dome-collapse eruptions. The reworked ash, however, contains low proportions of respirable ash (∼3 wt%) compared to primary ash samples. The concentration of ash particles re-suspended by road vehicles on Montserrat is found to decrease exponentially with height above the ground, indicating higher exposure for children compared with adults: PM4 concentration at 0.9 m (height of two-year-old child) is 3 times that at 1.8 m (adult height). The composition of the re-suspended road particles is similar to that re-suspended by the wind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Africano F, Bernard A (2000) Acid alteration in the fumarolic environment of Usu volcano, Hokkaido, Japan. J Volcanol Geotherm Res 97(1-4):475–495

    Google Scholar 

  • Baxter PJ, Bonadonna C, Dupree R, Hards VL, Kohn SC, Murphy MD, Nichols A, Nicholson RA, Norton G, Searl A, Sparks RSJ, Vickers BP (1999) Cristobalite in volcanic ash of the Soufriere Hills Volcano, Montserrat, British West Indies. Science 283:1142–1145

    Article  Google Scholar 

  • Bennett WD, Zeman KL (1998) Deposition of fine particles in children spontaneously breathing at rest. Inhal Toxicol 10(9):831–842

    Article  Google Scholar 

  • Bonadonna C, Mayberry GC, Calder ES, Sparks RSJ, Choux C, Jackson P, Lejeune AM, Loughlin SC, Norton GE, Rose WI, Ryan G, Young SR (2002) Tephra fallout in the eruption of Soufrière Hills Volcano, Montserrat. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geol Soc Lond Mem

  • Buist AS, Martin TR, Shore JH, Butler J, Lybarger J (1986) The development of a multidisciplinary plan for evaluation of the long-term health effects of the Mount St. Helens’ eruptions. Am J Public Health 76 Suppl 3:39–44

    Article  Google Scholar 

  • Clouter A, Brown D, Hohr D, Borm P, Donaldson K (2001) Inflammatory effects of respirable quartz collected in workplaces versus standard DQ12 quartz: particle surface correlates. Toxicol Sci 63(1):90–98

    Article  Google Scholar 

  • Colls JJ, Micallef A (1999) Measured and modelled concentrations and vertical profiles of airborne particulate matter within the boundary layer of a street canyon. Sci Total Environ 235:221–233

    Article  Google Scholar 

  • Daniels MJ, Dominici F, Samet JM, Zeger SL (2000) Estimating particulate matter-mortality dose-response curves and threshold levels: an analysis of daily time-series for the 20 largest US cities. Am J Epidemiol 152(5):397–406

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1996) An introduction to the rock forming minerals. Longman, New York

  • Devine JD, Murphy MD, Rutherford MJ, Barclay J, Sparks RSJ, Carroll MR, Young SR, Gardner JE (1998) Petrologic evidence for pre-eruptive pressure-temperature conditions, and recent reheating, of andesitic magma erupting at the Soufriere Hills Volcano, Montserrat, WI. Geophys Res Lett 25:3669–3672

    Article  Google Scholar 

  • Dobreva M, Burilkov T, Kolev K, Lalova P (1977) Characteristics of lung dusts and their relation to dust exposure and pathological findings in the lungs. In: Walton WH (ed) Inhaled particles IV, part 2. Pergamon, Oxford, pp 717–724

  • Dollberg DD, Bolyard ML, Smith DL (1986) Evaluation of physical health effects due to volcanic hazards: crystalline silica in Mount St. Helens volcanic ash. Am J Public Health 76 Suppl 3:53–58

    Article  Google Scholar 

  • Expert Panel on Air Quality Standards (1995) Particles. Department of the Environment, Her Majesty’s Stationery Office, London

  • Expert Panel on Air Quality Standards (2001) Airborne particles: what is the appropriate measurement on which to base a standard? A discussion document. Department for Environment, Food & Rural Affairs, London, http://www.defra.gov.uk/environment/airquality/aqs/air_measure/index.htm

  • Forbes L, Jarvis D, Potts J, Baxter PJ (2003) Volcanic ash and respiratory symptoms in children on the island of Montserrat, British West Indies. Occup Environ Med (in press)

  • Freeman JV, Cole TJ, Chinn S (1995) Cross-sectional stature and weight reference curves for the UK 1990. Arch Disease Childh 73(1):17–24

    Article  Google Scholar 

  • Fruchter JS, Robertson DE, Evans JC, Olsen KB, Lepel EA, Laul JC, Abel KH, Sanders RW, Jackson PO, Wogman NS, Perkins RW, van Tuyl HH, Beauchamp AV, Shade JW, Daniel JL et al. (1980) Mount St. Helens ash from the 18 May 1980 eruption: chemical, physical, mineralogical and biological properties. Science 209:1116–1125

    Article  Google Scholar 

  • Fubini B, Zanetti G, Altilia S, Tiozzo R, Lison D, Saffiotti U (1999) Relationship between surface properties and cellular responses to crystalline silica: studies with heat-treated cristobalite. Chem Res Toxicol 12:737–745

    Article  Google Scholar 

  • Harford C (2000) The volcanic evolution of Montserrat. PhD Thesis, University of Bristol

  • Hetland RB, Schwarze PE, Johansen BV, Myran T, Uthus N, Refsnes M (2001) Silica-induced cytokine release from A549 cells: importance of surface area versus size. Hum Exp Toxicol 20(1):46–55

    Article  Google Scholar 

  • Hohr D, Steinfartz Y, Schins RPF, Knaapen AM, Martra G, Fubini B, Borm PJA (2002) The surface area rather than the surface coating determines the acute inflammatory response after instillation of fine and ultrafine TiO2 in the rat. Int J Hyg Environ Health 205(3):239–244

    Article  Google Scholar 

  • Horwell CJ, Braña LP, Sparks RSJ, Murphy MD, Hards VL (2001) A geochemical investigation of fragmentation and physical fractionation in pyroclastic flows from the Soufriere Hills volcano, Montserrat. J Volcanol Geotherm Res 109(4):247–262

    Article  Google Scholar 

  • Housley DG, Berube KA, Jones TP, Anderson S, Pooley FD, Richards RJ (2002) Pulmonary epithelial response in the rat lung to instilled Montserrat respirable dusts and their major mineral components. Occup Environ Med 59:466–472

    Article  Google Scholar 

  • International Agency for Research on Cancer (1997) Silica, some silicates, coal dust and para-aramid fibrils. International Agency for Research on Cancer, Monogr Eval Carcinog Risks Humans 68

  • Lange RA (1994) The effect of H2O, CO2 and F on the density and viscosity of silicate melts. In: Carroll MR, Holloway JR (eds) Volatiles in magmas. Mineralogical Society of America, Washington, DC

  • Moore KR, Duffell H, Nicholl A, Searl A (2002) Monitoring of airborne particulate matter during the eruption of Soufrière Hills Volcano, Montserrat. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geol Soc Lond Mem

  • Moroney MJ (1951) Facts from figures. Penguin, London

  • Murphy SA, Berube KA, Richards RJ (1999) Bioreactivity of carbon black and diesel exhaust particles to primary Clara and type II epithelial cell cultures. Occup Environ Med 56(12):813–819

    Article  Google Scholar 

  • Murphy MD, Sparks RSJ, Barclay J, Carroll MR, Brewer TS (2000) Remobilization of andesite magma by intrusion of mafic magma at the Soufriere Hills volcano, Montserrat, West Indies. J Petrol 41(1):21–42

    Article  Google Scholar 

  • NIOSH (1974) Criteria for a recommended standard—occupational exposure to crystalline silica. National Institute for Occupational Safety and Health, Springfield, VA, DHEW Publ no 75-120, NTIS Publ no PB-246-697

  • OSHA (1989) Air contaminants Final Rule. 29 CFR Part 1910. US Department of Labor, Occupational Safety and Health Administration Fed Reg 54(12):2521

    Google Scholar 

  • Peters A, Dockery DW, Muller JE, Mittleman MA (2001) Increased particulate air pollution and the triggering of myocardial infarction. Circulation 103(23):2810–2815

    Google Scholar 

  • Quality of Urban Air Review Group (1996) Airborne particulate matter in the United Kingdom.London, Dept Environ 3

  • Robertson REA, Aspinall WP, Herd RA, Norton GE, Sparks RSJ, Young SR (2000) The 1995-98 eruption of the Soufriere Hills volcano, Montserrat. Philos Trans R Soc Lond A 358:1619–1637

    Article  Google Scholar 

  • Sarna-Wojcicki AM, Meyer CE, Woodward MJ, Lamothe PJ (1981) Composition of air-fall ash erupted on May 18, May 25, June 12, July 22, and August 7. In: Lipman PW, Mullineaux DR (eds) The 1980 eruption of Mount St Helens, Washington. Govt Printing Office, Washington, DC

  • Sparks RSJ, Murphy MD, Lejeune AM, Watts RB, Barclay J, Young SR (2000) Control on the emplacement of the andesite lava dome of the Soufriere Hills Volcano by degassing-induced crystallization. Terra Nova 12:14–20

    Article  Google Scholar 

  • Stone V, Shaw J, Brown DM, MacNee W, Faux SP, Donaldson K (1998) The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicol In Vitro 12(6):649–659

    Article  Google Scholar 

  • Talvitie NA (1951) Determination of quartz in presence of silicates using phosphoric acid. Anal Chem 23(4):623–626

    Article  Google Scholar 

  • Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K (2000) Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol 12:1113–1126

    Article  Google Scholar 

  • Watts RB, Herd RA, Sparks RSJ, Young SR (2002) Growth patterns and emplacement of the andesitic lava dome at Soufrière Hills Volcano, Montserrat. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geol Soc Lond Mem

  • Wilson MR, Stone V, Cullen RT, Searl A, Maynard RL, Donaldson K (2000) In vitro toxicology of respirable Montserrat volcanic ash. Occup Environ Med 57:727–733

    Article  Google Scholar 

  • Zanobetti A, Schwartz J, Samoli E, Gryparis A, Touloumi G, Atkinson R, Le Tertre A, Bobros J, Celko M et al. (2002) The temporal pattern of mortality responses to air pollution: a multicity assessment of mortality displacement. Epidemiology 13(1):87–93

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Horwell.

Additional information

Editorial responsibility: J. Stix

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horwell, C.J., Sparks, R.S.J., Brewer, T.S. et al. Characterization of respirable volcanic ash from the Soufrière Hills volcano, Montserrat, with implications for human health hazards. Bull Volcanol 65, 346–362 (2003). https://doi.org/10.1007/s00445-002-0266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-002-0266-6

Keywords

Navigation