, Volume 121, Issue 1, pp 1-11

Interspecific and intraspecific variation in tree seedling survival: effects of allocation to roots versus carbohydrate reserves

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We examined interspecific and intraspecific variation in tree seedling survival as a function of allocation to carbohydrate reserves and structural root biomass. We predicted that allocation to carbohydrate reserves would vary as a function of the phenology of shoot growth, because of a hypothesized tradeoff between aboveground growth and carbohydrate storage. Intraspecific variation in levels of carbohydrate reserves was induced through experimental defoliation of naturally occurring, 2-year-old seedlings of four northeastern tree species –Acer rubrum, A. saccharum, Quercus rubra, and Prunus serotina– with shoot growth strategies that ranged from highly determinate to indeterminate. Allocation to root structural biomass varied among species and as a function of light, but did not respond to the defoliation treatments. Allocation to carbohydrate reserves varied among species, and the two species with the most determinate shoot growth patterns had the highest total mass of carbohydrate reserves, but not the highest concentrations. Both the total mass and concentrations of carbohydrate reserves were significantly reduced by defoliation. Seedling survival during the year following the defoliation treatments did not vary among species, but did vary dramatically in response to defoliation. In general, there was an approximately linear relationship between carbohydrate reserves and subsequent survival, but no clear relationship between allocation to root structural biomass and subsequent survival. Because of the disproportionate amounts of reserves stored in roots, we would have erroneously concluded that allocation to roots was significantly and positively related to seedling survival if we had failed to distinguish between reserves and structural biomass in roots.

Received: 14 December 1999 / Accepted: 2 June 1999