Skip to main content
Log in

Growth dynamics of juvenile loggerhead sea turtles undergoing an ontogenetic habitat shift

  • Population ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Ontogenetic niche theory predicts that individuals may undergo one or more changes in habitat or diet throughout their lifetime to maintain optimal growth rates, or to optimize trade-offs between mortality risk and growth. We combine skeletochronological and stable nitrogen isotope (δ15N) analyses of sea turtle humeri (n = 61) to characterize the growth dynamics of juvenile loggerhead sea turtles (Caretta caretta) during an oceanic-to-neritic ontogenetic shift. The primary objective of this study was to determine how ontogenetic niche theory extends to sea turtles, and to individuals with different patterns of resource use (discrete shifters, n = 23; facultative shifters n = 14; non-shifters, n = 24). Mean growth rates peaked at the start of the ontogenetic shift (based on change in δ15N values), but returned to pre-shift levels within 2 years. Turtles generally only experienced 1 year of relatively high growth, but the timing of peak growth relative to the start of an ontogenetic shift varied among individuals (before, n = 14; during, n = 12; after, n = 8). Furthermore, no reduction in growth preceded the transition, as is predicted by ontogenetic niche theory. Annual growth rates were similar between non-transitioning turtles resident in oceanic and neritic habitats and turtles displaying alternative patterns of resource use. These results suggest that factors other than maximization of size-specific growth may more strongly influence the timing of ontogenetic shifts in loggerhead sea turtles, and that alternative patterns of resource use may have limited influence on somatic growth and age at maturation in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avens L, Snover ML (2013) Age and age estimation in sea turtles. In: Wyneken J, Lohmann KJ, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 97–134

    Chapter  Google Scholar 

  • Avens L, Goshe LR, Harms CA, Anderson ET, Goodman Hall AG, Cluse WM, Godfrey MH, Braun-McNeill J, Stacy B, Bailey R, Lamont MM (2012) Population characteristics, age structure, and growth dynamics of neritic juvenile green turtles in the northeastern Gulf of Mexico. Mar Ecol Prog Ser 458:213–229. doi:10.3354/meps09720

    Article  Google Scholar 

  • Avens L, Goshe LR, Pajuelo M, Bjorndal KA, MacDonald BD, Lemons GE, Bolten AB, Seminoff JA (2013) Complementary skeletochronology and stable isotope analyses offer new insight into juvenile loggerhead sea turtle oceanic stage duration and growth dynamics. Mar Ecol Prog Ser 491:235–251. doi:10.3354/meps10454

    Article  Google Scholar 

  • Avens L, Goshe LR, Coggins L, Snover ML, Pajuelo M, Bjorndal KA, Bolten AB (2015) Age and size at maturation- and adult-stage duration for loggerhead sea turtles in the western North Atlantic. Mar Biol. doi:10.1007/s00227-015-2705-x

    Google Scholar 

  • Bjorndal KA (1997) Foraging ecology and nutrition of sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 199–231

    Google Scholar 

  • Bjorndal KA, Bolten AB, Martins HR (2000) Somatic growth model of juvenile loggerhead sea turtles Caretta caretta: duration of pelagic stage. Mar Ecol Prog Ser 202:265–272. doi:10.3354/meps202265

    Article  Google Scholar 

  • Bjorndal KA, Bolten AB, Dellinger T, Delgado C, Martins HR (2003) Compensatory growth in oceanic loggerhead sea turtles: response to a stochastic environment. Ecology 84:1237–1249. doi:10.1890/0012-9658(2003)084[1237:CGIOLS]2.0.CO;2

  • Bjorndal KA, Schroeder BA, Foley AM, Witherington BE, Bresette M, Clark D, Herren RM, Arendt MD, Schmid JR, Meylan AB, Meylan PA, Provancha JA, Hart KM, Lamont MM, Carthy RR, Bolten AB (2013) Temporal, spatial, and body size effects on growth rates of loggerhead sea turtles (Caretta caretta) in the Northwest Atlantic. Mar Biol 160:2711–2721. doi:10.1007/s00227-013-2264-y

    Article  Google Scholar 

  • Bolten AB (2003) Active swimmers–passive drifters: the oceanic juvenile stage of loggerheads in the Atlantic system. In: Bolten AB, Witherington BE (eds) Loggerhead sea turtles. Smithsonian Books, Washington, DC, pp 63–78

    Google Scholar 

  • Braun-McNeill J, Epperly SP, Avens L, Snover ML, Taylor JC (2008) Growth rates of loggerhead sea turtles (Caretta caretta) from the western North Atlantic. Herpetol Conserv Biol 3:273–281

    Google Scholar 

  • Chaloupka M, Musick JA (1997) Age, growth, and population dynamics. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 233–376

    Google Scholar 

  • Coles WC, Musick JA, Williamson LA (2001) Skeletochronology validation from an adult loggerhead (Caretta caretta). Copeia 2001:240–242. doi:10.2307/1448117

    Article  Google Scholar 

  • Dahlgren CP, Eggleston DB (2000) Ecological processes underlying ontogenetic habitat shifts in a coral reef fish. Ecology 81:2227–2240. doi:10.2307/177110

    Article  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim et Cosmochim Acta 45:341–351. doi:10.1016/0016-7037(81)90244-1

    Article  CAS  Google Scholar 

  • Dmitriew CM (2011) The evolution of growth trajectories: what limits growth rate? Biol Rev 86:97–116. doi:10.1111/j.1469-185X.2010.00136.x

    Article  PubMed  Google Scholar 

  • Epperly SP, Braun-McNeill J, Richards PM (2007) Trends in catch rates of sea turtles in North Carolina, USA. Endanger Species Res 3:283–293. doi:10.3354/esr00054

    Article  Google Scholar 

  • Estrada JA, Rice AN, Natanson LJ, Skomal GB (2006) Use of isotopic analysis of vertebrae in reconstructing ontogenetic feeding ecology in white sharks. Ecology 87:829–834. doi:10.1890/0012-9658(2006)87[829:UOIAOV]2.0.CO;2

  • Ferretti F, Worm B, Britten GL, Heithaus MR, Lotze HK (2010) Patterns and ecosystem consequences of shark declines in the ocean: ecosystem consequences of shark declines. Ecol Lett 13:1055–1071. doi:10.1111/j.1461-0248.2010.01489.x

    PubMed  Google Scholar 

  • Francillon-Vieillot H, Arntzen JW, Géraudie J (1990) Age, growth and longevity of sympatric Triturus cristatus, T. marmoratus and their hybrids (Amphibia, Urodela): a skeletochronological comparison. J Herp 24:13–22. doi:10.2307/1564284

    Article  Google Scholar 

  • Goodman Hall AG, Avens L, Braun-McNeill J, Wallace B, Goshe LR (2015) Inferring long-term foraging trends of individual juvenile loggerhead sea turtles using stable isotopes. Mar Ecol Prog Ser 537:265–276. doi:10.3354/meps11452

    Article  Google Scholar 

  • Grol MGG, Nagelkerken I, Rypel AL, Layman CA (2011) Simple ecological trade-offs give rise to emergent cross-ecosystem distributions of a coral reef fish. Oecologia 165:79–88. doi:10.1007/s00442-010-1833-8

    Article  PubMed  Google Scholar 

  • Grol MGG, Rypel AL, Nagelkerken I (2014) Growth potential and predation risk drive ontogenetic shifts among nursery habitats in a coral reef fish. Mar Ecol Prog Ser 502:229–244. doi:10.3354/meps10682

    Article  Google Scholar 

  • Halliday TR, Verrell PA (1988) Body size and age in amphibians and reptiles. J Herp 22:253–265. doi:10.2307/1564148

    Article  Google Scholar 

  • Hamann M, Jessop TS, Schäuble CS (2007) Fuel use and corticosterone dynamics in hatchling green sea turtles (Chelonia mydas) during natal dispersal. J Exp Mar Biol Ecol 353:13–21. doi:10.1016/j.jembe.2007.08.017

    Article  CAS  Google Scholar 

  • Hammerschlag N, Broderick AC, Coker JW, Coyne MS, Dodd M, Frick MG, Godfrey MH, Godley BJ, Griffin DB, Hartog K, Murphy SR, Murphy TM, Nelson ER, Williams KL, Witt MJ, Hawkes LA (2015) Evaluating the landscape of fear between apex predatory sharks and mobile sea turtles across a large dynamics seascape. Ecology 96:2117–2126. doi:10.1890/14-2113.1

    Article  PubMed  Google Scholar 

  • Hatase H, Tsukamoto K (2008) Smaller longer, larger shorter: energy budget calculations explain intrapopulation variation in remigration intervals for loggerhead sea turtles (Caretta caretta). Can J Zool 86:595–600. doi:10.1139/Z08-035

    Article  Google Scholar 

  • Hatase H, Matsuzawa Y, Sato K, Bando T, Goto K (2004) Remigration and growth of loggerhead turtles (Caretta caretta) nesting on Senri Beach in Minabe, Japan: life-history polymorphism in a sea turtle population. Mar Biol 144:807–811. doi:10.1007/s00227-003-1232-3

    Article  Google Scholar 

  • Hatase H, Omuta K, Tsukamoto K (2010) Oceanic residents, neritic migrants: a possible mechanism underlying foraging dichotomy in adult female loggerhead turtles (Caretta caretta). Mar Biol 157:1337–1342. doi:10.1007/s00227-010-1413-9

    Article  Google Scholar 

  • Hatase H, Omuta K, Tsukamoto K (2013) A mechanism that maintains alternative life histories in a loggerhead sea turtle population. Ecology 94:2583–2594. doi:10.1890/12-1588.1

    Article  PubMed  Google Scholar 

  • Heithaus MR (2013) Predators, prey, and the ecological roles of sea turtles. In: Wyneken J, Lohmann KJ, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 249–284

    Chapter  Google Scholar 

  • Heithaus MR, Wirsing AJ, Thomson JA, Burkholder DA (2008) A review of lethal and non-lethal effects of predators on adult marine turtles. J Exp Mar Biol Ecol 356:43–51. doi:10.1016/j.jembe.2007.12.013

    Article  Google Scholar 

  • Kamezaki N, Matsui M (1997) Allometry of the loggerhead turtle, Caretta caretta. Chelonian Conserv Biol 2:421–425

    Google Scholar 

  • Kimirei IA, Nagelkerken I, Trommelen M, Blankers P, van Hoytema N, Hoeijmakers D, Huijbers CM, Mgaya YD, Rypel AL (2013) What drives ontogenetic niche shifts of fishes in coral reef ecosystems? Ecosystems 16:783–796. doi:10.1007/s10021-013-9645-4

    Article  Google Scholar 

  • Klinger RC, Musick JA (1992) Annular growth layers in juvenile loggerhead turtles (Caretta caretta). Bull Mar Sci 51:224–230

    Google Scholar 

  • Koch PL, Fogel ML, Tuross N (1994) Tracing the diets of fossil animals using stable isotopes. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell, Boston, pp 63–92

    Google Scholar 

  • Mansfield KL, Saba VS, Keinath JA, Musick JA (2009) Satellite tracking reveals a dichotomy in migration strategies among juvenile loggerhead turtles in the Northwest Atlantic. Mar Biol 156:2555–2570. doi:10.1007/s00227-009-1279-x

    Article  Google Scholar 

  • McClellan CM, Read AJ (2007) Complexity and variation in loggerhead sea turtle life history. Biol Lett 3:592–594. doi:10.1098/rsbl.2007.0355

    Article  PubMed  PubMed Central  Google Scholar 

  • McClellan CM, Braun-McNeill J, Avens L, Wallace BP, Read AJ (2010) Stable isotopes confirm a foraging dichotomy in juvenile loggerhead sea turtles. J Exp Mar Bio 387:44–51. doi:10.1016/j.jembe.2010.02.020

    Article  Google Scholar 

  • McKinney RA, Oczkowski AJ, Prezioso J, Hyde KJW (2010) Spatial variability of nitrogen isotope ratios of particulate material from Northwest Atlantic continental shelf waters. Estuar Coast Shelf Sci 89:287–293. doi:10.1016/j.ecss.2010.08.004

    Article  CAS  Google Scholar 

  • McMahon KW, Ling Hamady L, Thorrold SR (2013) A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol Oceanogr 58:697–714. doi:10.4319/lo.2013.58.2.0697

    Article  CAS  Google Scholar 

  • Medeiros L, da Silveira Monteiro D, Petitet R, Bugoni L (2015) Effects of lipid extraction on the isotopic values of sea turtle bone collagen. Aquat Biol 23:191–199. doi:10.3354/ab00628

    Article  Google Scholar 

  • Montoya JP, Carpenter EJ, Capone DG (2002) Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic. Limnol Oceanogr 47:1617–1628. doi:10.4319/lo.2002.47.6.1617

    Article  CAS  Google Scholar 

  • Musick JA, Limpus CJ (1997) Habitat utilization and migration in juvenile sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 137–164

    Google Scholar 

  • Newsome S, Etnier M, Monson D, Fogel M (2009) Retrospective characterization of ontogenetic shifts in killer whale diets via δ13C and δ15N analysis of teeth. Mar Ecol Prog Ser 374:229–242. doi:10.3354/meps07747

    Article  Google Scholar 

  • Olson RJ, Popp BN, Graham BS, López-Ibarra GA, Galván-Magaña F, Lennert-Cody CE, Bocanegra-Castillo N, Wallsgrove NJ, Gier E, Alatorre-Ramírez V, Ballance LT, Fry B (2010) Food-web inferences of stable isotope spatial patterns in copepods and yellowfin tuna in the pelagic eastern Pacific Ocean. Prog Oceanogr 86:124–138. doi:10.1016/j.pocean.2010.04.026

    Article  Google Scholar 

  • Owens DW (1997) Hormones in the life history of sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 315–341

    Google Scholar 

  • Parham JF, Zug GR (1997) Age and growth of loggerhead sea turtles (Caretta caretta) of coastal Georgia: an assessment of skeletochronological age-estimates. Bull Mar Sci 61:287–304

    Google Scholar 

  • Peckham SH, Maldonado-Diaz D, Tremblay Y, Ochoa R, Polovina J, Balazs G, Dutton PH, Nichols WJ (2011) Demographic implications of alternative foraging strategies in juvenile loggerhead turtles Caretta caretta of the North Pacific Ocean. Mar Ecol Prog Ser 425:269–280. doi:10.3354/meps08995

    Article  Google Scholar 

  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montaña CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189. doi:10.1007/s00442-006-0630-x

    Article  PubMed  Google Scholar 

  • Ramirez MD (2015) Sequential isotopic analysis to characterize ontogenetic shifts and growth dynamics of loggerhead sea turtles (Caretta caretta). Master thesis, Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA

  • Ramirez MD, Avens L, Seminoff JA, Goshe LR, Heppell SS (2015) Patterns of loggerhead turtle ontogenetic shifts revealed through isotopic analysis of annual skeletal growth increments. Ecosphere 6:1–17. doi:10.1890/ES15-00255.1

    Article  Google Scholar 

  • Ramsay TO, Burnett RT, Krewski D (2003) The effect of concurvity in generalized additive models linking mortality to ambient particulate matter. Epidemiology 14:18–23. doi:10.1097/01.EDE.0000042182.24340.3F

    Article  PubMed  Google Scholar 

  • Rasband WS (2015) ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA

  • Rau GH, Sweeney RE, Kaplan IR (1982) Plankton 13C:12C ratio changes with latitude: differences between northern and southern oceans. Deep-Sea Res 29(8A):1035–1039. doi:10.1016/0198-0149(82)90026-7

    Article  CAS  Google Scholar 

  • Salmon M, Scholl J (2014) Allometric growth in juvenile marine turtles: possible role as an antipredator adaptation. Zoology 117:131–138. doi:10.1016/j.zool.2013.11.004

    Article  PubMed  Google Scholar 

  • Salvanes AGV, Giske J, Nordeide JT (1994) Life history approach to habitat shifts for coastal cod. Aquac Fish Manag 25:215–228

    Google Scholar 

  • Seney EE, Musick JA (2007) Historical diet analysis of loggerhead sea turtles (Caretta Caretta) in Virginia. Copeia 2007:478–489. doi:10.1643/0045-8511(2007)7[478:HDAOLS]2.0.CO;2

  • Snover ML (2008) Ontogenetic habitat shifts in marine organisms: influencing factors and the impact of climate variability. Bull Mar Sci 83:53–67

    Google Scholar 

  • Snover ML, Hohn AA (2004) Validation and interpretation of annual skeletal marks in loggerhead (Caretta caretta) and Kemp’s ridley (Lepidochelys kempii) sea turtles. Fish Bull 102:682–692

    Google Scholar 

  • Snover ML, Avens L, Hohn AA (2007) Back-calculating length from skeletal growth marks in loggerhead sea turtles Caretta caretta. Endanger Species Res 3:95–104. doi:10.3354/esr003095

    Article  Google Scholar 

  • Snover M, Hohn A, Crowder L, Macko S (2010) Combining stable isotopes and skeletal growth marks to detect habitat shifts in juvenile loggerhead sea turtles Caretta caretta. Endanger Species Res 13:25–31. doi:10.3354/esr00311

    Article  Google Scholar 

  • Southwood A, Avens L (2009) Physiological, behavioral, and ecological aspects of migration in reptiles. J Comp Physiol B 180:1–23. doi:10.1007/s00360-009-0415-8

    Article  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Turner Tomaszewicz CN, Seminoff JA, Ramirez MD, Kurle CM (2015) Effects of demineralization on the stable isotope analysis of bone samples. Rapid Commun Mass Spec 29(20):1879–1888. doi:10.1002/rcm.7295

    Article  CAS  Google Scholar 

  • Turner Tomaszewicz CN, Seminoff JA, Avens L, Kurle CM (2016) Methods for sampling sequential annual bone growth layers for stable isotope analysis. Methods Ecol Evol 7:556–564. doi:10.1111/2041-210X.12522

    Article  Google Scholar 

  • Van Buskirk J, Crowder LB (1994) Life-history variation in marine turtles. Copeia 1994:66–81. doi:10.2307/1446672

    Article  Google Scholar 

  • Vaughan JR (2009) Evaluation of length distributions and growth variance to improve assessment of the loggerhead sea turtle, (Caretta caretta). Master thesis, Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA

  • Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size-structured populations. Annu Rev Ecol Syst 15:393–425

    Article  Google Scholar 

  • Wingfield JC, Schwabl H, Mattocks PWJ (1990) Endocrine mechanisms of migration. In: Gwinner E (ed) Bird migration: physiology and ecophysiology. Springer, Berlin, pp 232–256

    Chapter  Google Scholar 

  • Witzell WN (2002) Immature Atlantic loggerhead turtles (Caretta caretta): suggested changes to the life history model. Herpetol Rev 33:266–269

    Google Scholar 

  • Wood SN (2006) Generalized Additive Models: an introduction with R. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Zug GR (1990) Age determination of long-lived reptiles: some techniques for seaturtles. Ann Sci Nat 11:219–222

    Google Scholar 

  • Zug GR, Wynn AH, Ruckdeschel C (1986) Age determination of loggerhead sea turtles, Caretta caretta, by incremental growth marks in the skeleton. Smithson Contrib Zool 427:1–44

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. McKay, College of Earth, Ocean, and Atmospheric Sciences Stable Isotope Laboratory (Oregon State University, Corvallis, OR), for assistance with stable isotope analyses; J. Miller for micromill training; E. Parks for assistance with sample processing and collection; and, A. Yarbrough for assistance with collecting areal growth measurements. Special thanks to participants of the National Sea Turtle Stranding and Salvage Network for their dedicated work and sample collection. This study was funded through the Living Marine Resources Cooperative Science Center (LMRCSC) as part of the NOAA Educational Partnership Program, and the NSF Graduate Research Fellowship Program. Research was conducted under USFWS permit number TE-676379-5 issued to the NMFS Southeast Fisheries Science Center. Thank you to M. Snover, J. Miller, B. Crump, C. Layman, and two anonymous reviewers for their help in improving this manuscript.

Author contribution statement

MDR, LA, SSH conceived and designed the study. LA, JAS provided bone samples. LA, LRG performed skeletochronological analyses. MDR, JAS performed stable isotope analyses. MDR analyzed the data and wrote the manuscript; other authors provided editorial advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Ramirez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Craig A. Layman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramirez, M.D., Avens, L., Seminoff, J.A. et al. Growth dynamics of juvenile loggerhead sea turtles undergoing an ontogenetic habitat shift. Oecologia 183, 1087–1099 (2017). https://doi.org/10.1007/s00442-017-3832-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-017-3832-5

Keywords

Navigation