Skip to main content

Advertisement

Log in

Joint effects of resources and amphibians on pond ecosystems

  • Ecosystem ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Primary production can be controlled through bottom–up (e.g., resources) or top–down (e.g., predators) constraints. Two key bottom–up resources in small aquatic systems are light and nutrients, and forest canopy cover heavily influences these factors, whereas amphibian and invertebrate colonizers exert top–down pressure as grazers and predators. We designed our experiment to specifically manipulate two different top–down and bottom–up factors. We manipulated resources by altering light (low/high) and nutrient (low/high) availability; omnivores with the presence/absence of southern leopard frog tadpoles (Lithobates sphenocephalus); and predators with the presence/absence of spotted salamander larvae (Ambystoma maculatum) in a full-factorial experiment conducted over 14 weeks. We observed that both bottom–up and top–down effects were important in predicting lower trophic level biomass. We found a significant top–down effect of salamanders on Daphnia, but tadpoles had the strongest overall effect on the food web, influencing phytoplankton (+), periphyton (−), and chironomids (−). None of our models were good predictors of phytoplankton biomass, but both shading and nutrient availability relatively equally boosted periphyton biomass. We also found large temporal differences in food-web dynamics. Our results underscore the need for more information into how ecosystem functioning could be altered by land use, amphibian extirpation, and climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altig R, Whiles MR, Taylor CL (2007) What do tadpoles really eat? Assessing the trophic status of an understudied and imperiled group of consumers in freshwater habitats. Freshw Biol 52:386–395. doi:10.1111/j.1365-2427.2006.01694.x

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects models using Eigen and S4. R package version 1:1–7. URL: http://CRAN.R-project.org/package=lme4

  • Batzer DP, Palik BJ, Buech R (2004) Relationships between environmental characteristics and macroinvertebrate communities in seasonal woodland ponds of Minnesota. J North Am Benthol Soc 23:50–68. doi:10.1899/0887-3593(2004)023<0050:RBECAM>2.0.CO;2

    Article  Google Scholar 

  • Blaustein L, Friedman J, Fahima T (1996) Larval Salamandra drive temporary pool community dynamics: evidence from an artificial pool experiment. Oikos 76:392–402

  • Colburn EA, Weeks SC, Reed SK (2008) Diversity and ecology of vernal pool invertebrates. In: Calhoun AJK, DeMaynadier PG (eds) Science and conservation of vernal pools in northeastern North America. CRC Press, Boca Raton, pp 105–126

    Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144

  • Connelly S et al (2008) Changes in stream primary producer communities resulting from large-scale catastrophic amphibian declines: can small-scale experiments predict effects of tadpole loss? Ecosystems 11:1262–1276. doi:10.1007/s10021-008-9191-7

    Article  Google Scholar 

  • Davenport JM, Chalcraft DR (2012) Evaluating the effects of trophic complexity on a keystone predator by disassembling a partial intraguild predation food web. J Anim Ecol 81:242–250. doi:10.1111/j.1365-2656.2011.01906.x

    Article  PubMed  Google Scholar 

  • Dickman EM, Newell JM, González MJ, Vanni MJ (2008) Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. Proc Natl Acad Sci USA 105:18408–18412. doi:10.1073/pnas.0805566105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earl JE, Semlitsch RD (2013) Spatial subsidies, trophic state, and community structure: examining the effects of leaf litter input on ponds. Ecosystems 15:639–651. doi:10.1007/s10021-013-9639-2

    Article  Google Scholar 

  • Elser JJ et al (2009) Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326:835–837. doi:10.1126/science.1176199

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Thompson B, Wang L (1999) Effects of sample size, estimation methods, and model specification on structural equation modeling fit indexes. Struct Equ Model Multidiscip J 6:56–83. doi:10.1080/10705519909540119

    Article  Google Scholar 

  • Figiel CR Jr, Semlitsch RD (1990) Population variation in survival and metamorphosis of larval salamanders (Ambystoma maculatum) in the presence and absence of fish predation. Copeia 3:818–826

    Article  Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks

    Google Scholar 

  • Geider RJ (1987) Light and temperature dependence of the carbon to chlorophyll ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytol 106:1–34

    Article  CAS  Google Scholar 

  • Gibbons JW et al (2006) Remarkable amphibian biomass and abundance in an isolated wetland: implications for wetland conservation. Conserv Biol 20:1457–1465. doi:10.1111/j.1523-1739.2006.00443.x

    Article  PubMed  Google Scholar 

  • Gonzalez MJ, Knoll LB, Vanni MJ (2010) Differential effects of elevated nutrient and sediment inputs on survival, growth and biomass of a common larval fish species (Dorosoma cepedianum). Freshw Biol 55:654–669. doi:10.1111/j.1365-2427.2009.02304.x

    Article  CAS  Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Hansen MC et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853. doi:10.1126/science.1244693

    Article  CAS  PubMed  Google Scholar 

  • Hessen DO, Færøvig PJ, Andersen T (2002) Light, nutrients, and P:C ratios in algae: grazer performance related to food quality and quantity. Ecology 83:1886–1898. doi:10.1890/0012-9658(2002)083[1886:LNAPCR]2.0.CO;2

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland, p 151

  • Iwai N, Kagaya T (2007) Positive indirect effect of tadpoles on a detritivore through nutrient regeneration. Oecologia 152:685–694. doi:10.1007/s00442-007-0682-6

    Article  PubMed  Google Scholar 

  • Iwai N, Kagaya T, Alford RA (2012) Feeding by omnivores increases food available to consumers. Oikos 121:313–320. doi:10.1111/j.1600-0706.2011.20128.x

    Article  CAS  Google Scholar 

  • Jones JR, Bachmann RW (1974) Limnological features of some northwestern Iowa lakes. Proc Iowa Acad Sci 81:158–163

  • Leibold MA, Wilbur HM (1992) Interactions between food-web structure and nutrients on pond organisms. Nature 360:341–343. doi:10.1038/360341a0

    Article  Google Scholar 

  • Liess A, Lange K, Schulz F, Piggott JJ, Matthaei CD, Townsend CR (2009) Light, nutrients and grazing interact to determine diatom species richness via changes to productivity, nutrient state and grazer activity. J Ecol 97:326–336. doi:10.1111/j.1365-2745.2008.01463.x

    Article  Google Scholar 

  • Mette EM et al (2011) Phytoplankton communities and stoichiometry are interactively affected by light, nutrients, and fish. Limnol Oceanogr 56:1959–1975. doi:10.4319/lo.2011.56.6.1959

    Article  CAS  Google Scholar 

  • Mokany A, Wood JT, Cunningham SA (2008) Effect of shade and shading history on species abundances and ecosystem processes in temporary ponds. Freshw Biol 53:1917–1928. doi:10.1111/j.1365-2427.2008.02076.x

    Article  Google Scholar 

  • Morin PJ (1983) Predation, competition, and the composition of larval anuran guilds. Ecol Monogr 53:119–138. doi:10.2307/1942491

    Article  Google Scholar 

  • Morin PJ (1995) Functional redundancy, non-additive interactions, and supply-side dynamics in experimental pond communities. Ecology. doi:10.2307/1940637

    Google Scholar 

  • O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and resource availability shift food web structure and metabolism. PLoS Biol 7:e1000178. doi:10.1371/journal.pbio.1000178

    Article  PubMed  PubMed Central  Google Scholar 

  • Ousterhout BH, Semlitsch RD (2015) Non-additive response of larval ringed salamanders to intraspecific density. Oecologia. doi:10.1007/s00442-015-3516-y

    PubMed  Google Scholar 

  • Preisser EL, Bolnick DI, Benard MF (2005) Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86:501–509

    Article  Google Scholar 

  • Preisser EL, Bolnick DI, Grabowski JH (2009) Resource dynamics influence the strength of non-consumptive predator effects on prey. Ecol Lett 12:315–323. doi:10.1111/j.1461-0248.2009.01290.x

    Article  PubMed  Google Scholar 

  • Rohr JR, Crumrine PW (2005) Effects of an herbicide and an insecticide on pond community structure and processes. Ecol Appl 15:1135–1147

    Article  Google Scholar 

  • Rosseel Y (2012) lavaan: an R package for structural equation modeling. J Stat Softw 48:1–36

    Article  Google Scholar 

  • Rowland FE, Bricker KJ, Vanni MJ, González MJ (2015) Light and nutrients regulate energy transfer through benthic and pelagic food chains. Oikos 124:1648–1663. doi:10.1111/oik.02106

    Article  CAS  Google Scholar 

  • Rowland FE, Tuttle SK, González MJ, Vanni MJ (2016) Canopy cover and anurans: nutrients are the most important predictor of growth and development. Can J Zoo 94:225–232. doi:10.1139/cjz-2015-0022

    Article  CAS  Google Scholar 

  • Ruehl CB, Trexler JC (2013) A suite of prey traits determine predator and nutrient enrichment effects in a tri-trophic food chain. Ecosphere 4:1–21. doi:10.1890/ES13-00065.1

    Article  Google Scholar 

  • Schiesari L (2006) Pond canopy cover: a resource gradient for anuran larvae. Freshw Biol 51:412–423. doi:10.1111/j.1365-2427.2005.01497.x

    Article  CAS  Google Scholar 

  • Schiesari L, Werner EE, Kling GW (2009) Carnivory and resource-based niche differentiation in anuran larvae: implications for food web and experimental ecology. Freshw Biol 54:572–586. doi:10.1111/j.1365-2427.2008.02134.x

    Article  Google Scholar 

  • Schindler DE, Knapp RA, Leavitt PR (2001) Alteration of nutrient cycles and algal production resulting from fish introductions into mountain lakes. Ecosystems 4:308–321. doi:10.1007/s10021-001-0013-4

    Article  CAS  Google Scholar 

  • Seale DB (1980) Influence of amphibian larvae on primary production, nutrient flux, and competition in a pond ecosystem. Ecology 61:1531–1550

    Article  Google Scholar 

  • Semlitsch RD, Boone MD (2009) Aquatic mesocosms. In: Dodd K (ed) Ecology and conservation of amphibians: a handbook of techniques. Oxford University Press, Oxford, pp 87–104

    Google Scholar 

  • Shipley B (2000) Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inference. Cambridge University Press, New York

    Book  Google Scholar 

  • Shurin JB, Clasen JL, Greig HS, Kratina P, Thompson PL (2012) Warming shifts top-down and bottom-up control of pond food web structure and function. Philos Trans R Soc Lond B Biol Sci 367:3008–3017. doi:10.1098/rstb.2012.0243

    Article  PubMed  PubMed Central  Google Scholar 

  • Siehoff S, Hammers-Wirtz M, Strauss T, Ratte HT (2009) Periphyton as alternative food source for the filter-feeding cladoceran Daphnia magna. Freshw Biol 54:15–23. doi:10.1111/j.1365-2427.2008.02087.x

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Stoler AB, Relyea RA (2011) Living in the litter: the influence of tree leaf litter on wetland communities. Oikos 120:862–872. doi:10.1111/j.1600-0706.2010.18625.x

    Article  Google Scholar 

  • Stuart SN et al (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786. doi:10.1126/science.1103538

    Article  CAS  PubMed  Google Scholar 

  • Taylor BE, Estes RA, Pechmann JHK, Semlitsch RD (1988) Trophic relations in a temporary pond: larval salamanders and their microinvertebrate prey. Can J Zool 66:2191–2198. doi:10.1139/z88-326

    Article  Google Scholar 

  • Turner AM (2004) Non-lethal effects of predators on prey growth rates depend on prey density and nutrient additions. Oikos 104:561–569

    Article  Google Scholar 

  • Vadeboncoeur Y, Jeppesen E, Zanden M, Schierup HH, Christoffersen K, Lodge DM (2003) From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnol Oceanogr 48:1408–1418

    Article  Google Scholar 

  • Wells KD (2010) The ecology and behavior of amphibians. University of Chicago Press, Chicago

    Google Scholar 

  • Werner EE, Glennemeier KS (1999) Influence of forest canopy cover on the breeding pond distributions of several amphibian species. Copeia 1:1–12

    Article  Google Scholar 

  • Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100

    Article  Google Scholar 

  • Whiles MR et al (2010) Fatty acid analyses reveal high degrees of omnivory and dietary plasticity in pond-dwelling tadpoles. Freshw Biol 55:1533–1547

    Article  CAS  Google Scholar 

  • Wilbur HM (1997) Experimental ecology of food webs: complex systems in temporary ponds: the Robert H. MacArthur Award Lecture. Ecology 78:2279–2302

    Article  Google Scholar 

  • Wilbur HM (1980) Complex life cycles. Annu Rev Ecol Syst 11:67–93

    Article  Google Scholar 

  • Wojdak JM (2005) Relative strength of top-down, bottom-up, and consumer species richness effects on pond ecosystems. Ecol Monogr 75:489–504

    Article  Google Scholar 

  • Yvon-Durocher G, Jones JI, Trimmer M, Woodward G, Montoya JM (2010) Warming alters the metabolic balance of ecosystems. Philos Trans R Soc Lond B Biol Sci 365:2117–2126. doi:10.1098/rstb.2010.0038

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank A. Brock for setup and sampling help, A. Varwig for help setting up the experiment, T. Anderson and J. Burkhart for help collecting egg masses, and D. Obrecht and the Jones Lab for invaluable assistance with lab analyses. A. Bowling, the Semlitsch lab, the Holdo lab, and two anonymous reviewers provided helpful comments on previous versions of this manuscript. This research was supported by the DoD Strategic Environmental Research Development Program (RC2155). All animals were collected and maintained under the University of Missouri Animal Care and Use Committee Protocol No. 7403 and Missouri Department of Conservation Wildlife Collection Permit No. 15888.

Author contribution statement

FER and RDS conceived and designed the experiment. FER and MBR performed the experiment. FER analyzed the data. FER wrote the manuscript and RDS provided editorial advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freya E. Rowland.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Joel Trexler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rowland, F.E., Rawlings, M.B. & Semlitsch, R.D. Joint effects of resources and amphibians on pond ecosystems. Oecologia 183, 237–247 (2017). https://doi.org/10.1007/s00442-016-3748-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3748-5

Keywords

Navigation