Skip to main content

Advertisement

Log in

Marine ecosystem resilience during extreme deoxygenation: the Early Jurassic oceanic anoxic event

  • Ecosystem ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Global warming during the Early Jurassic, and associated widespread ocean deoxygenation, was comparable in scale with the changes projected for the next century. This study quantifies the impact of severe global environmental change on the biological traits of marine communities that define the ecological roles and functions they deliver. We document centennial–millennial variability in the biological trait composition of Early Jurassic (Toarcian) seafloor communities and examine how this changed during the event using biological traits analysis. Environmental changes preceding the global oceanic anoxic event (OAE) produced an ecological shift leading to stressed benthic palaeocommunities with reduced resilience to the subsequent OAE. Changes in traits and ecological succession coincided with major environmental changes; and were of similar nature and magnitude to those in severely deoxygenated benthic communities today despite the very different timescales. Changes in community composition were linked to local redox conditions whereas changes in populations of opportunists were driven by primary productivity. Throughout most of the OAE substitutions by tolerant taxa conserved the trait composition and hence functioning, but periods of severe deoxygenation caused benthic defaunation that would have resulted in functional collapse. Following the OAE recovery was slow probably because the global nature of the event restricted opportunities for recruitment from outside the basin. Our findings suggest that future systems undergoing deoxygenation may initially show functional resilience, but severe global deoxygenation will impact traits and ecosystem functioning and, by limiting the species pool, will slow recovery rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Suwaidi AH et al (2010) First record of the Early Toarcian Oceanic Anoxic Event from the Southern Hemisphere, Neuquén Basin, Argentina. J Geol Soc London 167:633–636. doi:10.1144/0016-76492010-025

    Article  CAS  Google Scholar 

  • Arntz WE et al (2006) El Niño and similar perturbation effects on the benthos of the Humboldt, California, and Benguela current upwelling ecosystems. Adv Geosci 6:243–265. doi:10.5194/adgeo-6-243-2006

    Article  Google Scholar 

  • Bailey TR, Rosenthal Y, McArthur JM, Van De Schootbrugge B, Thirlwall MF (2003) Paleoceanographic changes of the Late Pliensbachian–Early Toarcian interval: a possible link to the genesis of an Oceanic Anoxic Event. Earth Planet Sci Lett 212:307–320. doi:10.1016/S0012-821X(03)00278-4

    Article  CAS  Google Scholar 

  • Barnosky AD et al (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57. doi:10.1038/nature09678

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt JR, Leslie HM (2013) Resilience to climate change in coastal marine ecosystems. Annu Rev Mar Sci 5:371–392. doi:10.1146/annurev-marine-121211-172411

    Article  Google Scholar 

  • Bertling M (2011) What’s in a name? Nomenclature, systematics, ichnotaxonomy. In: Miller W III (ed) Trace fossils: concepts, problems and prospects. Elsevier, Oxford, pp 81–91

    Google Scholar 

  • Boyer D, Droser ML (2011) A combined trace- and body-fossil approach reveals high-resolution record of the oxygen fluctuations in Devonian seas. Palaios 26:500–508

    Article  Google Scholar 

  • Boyer D, Owens JD, Lyons TW, Droser ML (2011) Joining forces: combined biological and geochemical proxies reveal a complex but refined high-resolution palaeo-oxygen history in Devonian epeiric seas. Palaeogeogr Palaeoclim 306:134–146

    Article  Google Scholar 

  • Bremner J, Rogers SI, Frid CLJ (2006) Matching biological traits to environmental conditions in marine benthic ecosystems. J Marine Syst 60:302–316. doi:10.1016/j.jmarsys.2006.02.004

    Article  Google Scholar 

  • Brett CE, Baird GC (1985) Comparative taphonomy: a key to palaeoenvironmental interpretation based on fossil preservation. Palaios 1:207–227

    Article  Google Scholar 

  • Bush AW, Bambach RK, Daley GM (2007) Changes in theoretical ecospace utilization in marine fossil assemblages between the Mid-Paleozoic and Late Cenozoic. Paleobiology 33:76–97

    Article  Google Scholar 

  • Bush AM, Brame RI (2010) Multiple palaeoecological controls on the composition of marine fossil assemblages from the Frasnian (Late Devonian) of Virginia, with a comparison of ordination methods. Paleobiology 36:573–591

    Article  Google Scholar 

  • Cardinale BJ et al (2011) The functional role of producer diversity in ecosystems. Am J Bot 98:572–592. doi:10.3732/ajb.1000364

    Article  PubMed  Google Scholar 

  • Cardinale BJ et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. doi:10.1038/nature11148

    Article  CAS  PubMed  Google Scholar 

  • Caruthers AH, Gröcke DR, Smith PL (2011) The significance of an Early Jurassic (Toarcian) carbon-isotope excursion in Haida Gwaii (Queen Charlotte Islands), British Columbia, Canada. Earth Planet Sci Lett 307:19–26. doi:10.1016/j.epsl.2011.04.013

    Article  CAS  Google Scholar 

  • Caswell BA (2010) The response of the marine biota to the early Toarcian (Early Jurassic) oceanic anoxic event. PhD dissertation, Department of Earth Sciences, The Open Univeristy, Milton Keynes, UK

  • Caswell BA, Coe AL (2012) A high-resolution shallow marine record of the Toarcian (Early Jurassic) Oceanic Anoxic Event from the East Midlands Shelf, UK. Palaeogeogr Palaeoclim 365:124–135. doi:10.1016/j.palaeo.2012.09.021

    Article  Google Scholar 

  • Caswell BA, Coe AL (2013) Primary productivity controls on opportunistic bivalves during Early Jurassic oceanic anoxia. Geology 41:1163–1166. doi:10.1130/G34819.1

    Article  CAS  Google Scholar 

  • Caswell BA, Coe AL (2014) The impact of anoxia on pelagic macrofauna during the Toarcian Oceanic Anoxic Event (Early Jurassic). Proc Geol Assoc 125:383–391. doi:10.1016/j.pgeola.2014.06.001

    Article  Google Scholar 

  • Caswell BA, Frid CLJ (2013) Learning from the past: functional ecology of marine benthos during 8 million years of aperiodic hypoxia, lessons from the Late Jurassic. Oikos 122:1687–1699. doi:10.1111/j.1600-0706.2013.00380.x

    Article  Google Scholar 

  • Caswell BA, Coe AL, Cohen AS (2009) New range data for marine invertebrate species across the early Toarcian mass extinction. J Geol Soc London 166:859–872. doi:10.1144/0016-76492008-0831

    Article  Google Scholar 

  • Cherns L, Wheeley JR, Wright VP (2008) Taphonomic windows and molluscan preservation. Palaeogeogr Palaeoclim 270:220–229

    Article  Google Scholar 

  • Clark MS et al (2013) Hypoxia impacts large adults first: consequences in a warming world. Glob Change Biol 19:2251–2263. doi:10.1111/gcb.12197

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: An approach to statistical analyses and interpretation. Primer-e, Plymouth, UK

  • Cohen AS, Coe AL, Harding SM, Schwark L (2004) Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering. Geology 32:157–160. doi:10.1130/G20158.1

    Article  CAS  Google Scholar 

  • Conley DJ, Carstensen J, Vaquer-Sunyer R, Duarte CM (2009) Ecosystem thresholds with hypoxia. Hydrobiologia 629:21–29. doi:10.1007/s10750-009-9764-2

    Article  CAS  Google Scholar 

  • Danise S, Twitchett RJ, Little CTS (2015) Environmental controls on Jurassic marine ecosystems during global warming. Geology 43:263–266. doi:10.1130/G36390.1

    Article  CAS  Google Scholar 

  • Dauer DM, Rodi AJ Jr, Ranasinghe JA (1992) Effects of low dissolved oxygen events on the macrobenthos of the lower Chesapeake Bay. Estuaries 15:384–391. doi:10.2307/1352785

    Article  CAS  Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929. doi:10.1126/science.1156401

    Article  CAS  PubMed  Google Scholar 

  • Diaz R, Rabalais NN, Breitburg DL (2012) Agriculture’s impact on aquaculture: hypoxia and eutrophication in marine waters. Organisation for Economic Co-operation and Development, Paris, France

  • Gray JS, Wu RSS, Or YY (2002) Effects of hypoxia and organic enrichment on the coastal marine ecosystem. Mar Ecol Prog Ser 238:249–279. doi:10.3354/meps238249

    Article  Google Scholar 

  • Greenstreet SPR, Bryant AD, Broekhuizen N, Hall SJ, Heath MR (1997) Seasonal variation in the consumption of food by fish in the North Sea and implications for food web dynamics. ICES J Mar Sci 54:243–266. doi:10.1006/jmsc.1996.0183

    Article  Google Scholar 

  • Gröcke D, Hori RS, Trabucho-Alexandre J, Kemp DB (2011) An open ocean record of the Toarcian oceanic anoxic event. Solid Earth 2:247–257. doi:10.5194/se-2-245-2011

    Article  Google Scholar 

  • Harding SM (2004) The Toarcian oceanic anoxic event: organic and inorganic geochemical anomalies in organic-carbon-rich mudrocks from the North Yorkshire Coast, UK and Dotternhausen Quarry, SW Germany. Ph.D. dissertation, Department of Earth Sciences, The Open University, UK

  • Hermoso M, Le Callonnec L, Minoletti F, Renard M, Hesselbo SP (2009) Expression of the Early Toarcian negative carbon-isotope excursion in separated carbonate microfractions (Jurassic, Paris Basin). Earth Planet Sci Lett 277:194–203. doi:10.1016/j.epsl.2008.10.013

    Article  CAS  Google Scholar 

  • Herrando-Pérez S, Frid CLJ, Tore H (2001) Recovery patterns of macrobenthos and sediment at a closed fly-ash dumpsite. Sarsia 86:389–400. doi:10.1080/00364827.2001.10425526

    Article  Google Scholar 

  • Hesselbo SP, Pienkowski G (2011) Stepwise atmospheric carbon-isotope excurison during the Toarcian Oceanic Anoxic Event (Early Jurassic, Polish Basin). Earth Planet Sci Lett 301:365–372. doi:10.1016/j.epsl.2010.11.021

    Article  CAS  Google Scholar 

  • Hesselbo SP et al (2000) Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406:392–395. doi:10.1038/35019044

    Article  CAS  PubMed  Google Scholar 

  • Hesselbo SP, Jenkyns HC, Duarte LV, Oliveira LCV (2007) Carbon-isotope record of the Early Jurassic (Toarcian) oceanic anoxic event from fossil wood and marine carbonate (Luisitanian Basin, Portugal). Earth Planet Sci Lett 253:455–470. doi:10.1016/j.epsl.2006.11.009

    Article  CAS  Google Scholar 

  • Howard AS (1984) Palaeoecology, sedimentology and depositional environments of the middle Lias of North Yorkshire. Ph.D. dissertation, Department of Earth Science, University of London, UK

  • Howarth MK (1992) The Ammonite family Hildoceratidae in the Lower Jurassic of Britain. Monograph of the Palaeontographical Society 586. Palaeontographical Society, London, UK

  • IPCC (2013) Climate change 2013: the physical science basis. Working Group I Contribution to the IPCC 5th Assessment Report of the IPCC. Cambridge University Press, UK

  • Jenkyns HC (1988) The early Toarcian (Jurassic) anoxic event: stratigraphic, sedimentary, and geochemical evidence. Am J Sci 288:101–151. doi:10.2475/ajs.288.2.101

    Article  CAS  Google Scholar 

  • Jenkyns HC (2010) Geochemistry of oceanic anoxic events. Geochem Geophys Geosyst 11:1–30. doi:10.1029/2009GC002788

    Article  Google Scholar 

  • Karlson K, Rosenberg R, Bonsdorff E (2002) Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters—a review. Oceanogr Mar Biol 40:427–489. doi:10.1201/9780203180594.ch8

    Google Scholar 

  • Kemp DB, Coe AL, Cohen AS, Weedon GP (2011) Astronomical forcing and chronology of the early Toarcian (Early Jurassic) oceanic anoxic event in Yorkshire, UK. Paleoceanography 26:1–17. doi:10.1029/2011pa002122

    Article  Google Scholar 

  • Korte C, Hesselbo SP (2011) Shallow marine carbon and oxygen isotope and elemental records indicate icehouse-greenhouse cycles during the Early Jurassic. Paleoceanography 26:1–18. doi:10.1029/2011PA002160

    Article  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology, 3rd English edn. Elsevier Science BV, Amsterdam

  • Levin LA, Gage J (1998) Relationships between oxygen, organic matter and the diversity of bathyal macrofauna. Deep-Sea Res Pt I 45:129–163. doi:10.1016/S0967-0645(97)00085-4

    Article  CAS  Google Scholar 

  • Levin LA et al (2009) Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6:2063–2098. doi:10.5194/bg-6-2063-2009

    Article  CAS  Google Scholar 

  • Little CTS (1995) The Pliensbachina-Toarcian extinction. Ph.D. dissertation, Department of Geology, Bristol University, UK

  • Little CTS, Benton MJ (1995) Early Jurassic Mass extinction—a global long-term event. Geology 23:495–498. doi:10.1130/0091-7613(1995)

    Article  Google Scholar 

  • Littler K, Hesselbo SP, Jenkyns H (2010) A carbon-isotope perturbation at the Pliensbachian-Toarcian boundary: evidence from the Lias Group, NE England. Geol Mag 147:181–192. doi:10.1017/S0016756809990458

    Article  CAS  Google Scholar 

  • Martin KD (2004) A re-evaluation of the realtionship between trace fossils and dysoxia. Geol Soc Lond Spec Publ 228:141–156. doi:10.1144/GSL.SP.2004.228.01.08

    Article  Google Scholar 

  • Novack-Gottshall PM (2007) Using a theoretical ecospace to quantify the ecological diversity of Palaeozoic and modern marine biotas. Paleobiology 33:273–294

    Article  Google Scholar 

  • Oksanen J et al (2016) Vegan: community ecology package. R Package version 2.4-0. https://CRAN.R-project.org/package=vegan

  • Pearce CR, Cohen AS, Coe AL, Burton KW (2008) Mo isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the early Jurassic. Geology 36:231–234. doi:10.1130/G24446A.1

    Article  CAS  Google Scholar 

  • Pearson TH, Rosenberg R (1978) Macrobenthic succession in realtion to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol 16:229–311

    Google Scholar 

  • Röhl H-J, Schmid-Röhl A, Oschmann W, Frimmel A, Schwark L (2001) The Posidonia Shale (lower Toarcian) of SW Germany an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeogr Palaeoclim 165:27–52. doi:10.1016/S0031-0182(00)00152-8

    Article  Google Scholar 

  • Rumohr H, Bonsdorff E, Pearson TH (1996) Zoobenthic succession in Baltic sedimentary habitats. Arch Fish Mar Res 44:179–214

    Google Scholar 

  • Saelen G, Doyle P, Talbot MR (1996) Stable-isotope analyses of belemnite rostra from the Whitby mudstone formation, England: surface water conditions during deposition of a marine black shale. Palaios 11:97–117. doi:10.2307/3515065

    Article  Google Scholar 

  • Savrda CE (2011a) Taphonomy of trace fossils. In: Miller W III (ed) Trace fossils: concepts, problems and prospects. Elsevier, Oxford, pp 92–109

    Google Scholar 

  • Savrda CE (2011b) Trace fossils and marine benthic oxygenation. In: Miller W III (ed) Trace fossils: concepts, problems and prospects. Elsevier, Oxford, pp 149–156

    Google Scholar 

  • Seilacher A (2007) Trace fossil analysis. Springer, Berlin, pp 142–144

    Google Scholar 

  • Smith CR, Levin LA, Hoover DJ, McMurtry G, Gage JD (2000) Variations in bioturbation across the oxygen minimum zone in the northwest Arabian Sea. Deep-Sea Res Pt II 47:227–257

    Article  CAS  Google Scholar 

  • Stachowicz JJ, Bruno JF, Duffy JE (2007) Understanding the effects of marine biodiversity on communities and ecosystems. Annu Rev Ecol Evol Syst 38:739–766. doi:10.1146/annurev.ecolsys.38.091206.095659

    Article  Google Scholar 

  • Stachowitsch M (1991) Anoxia in the Northern Adriatic Sea: rapid death, slow recovery. In: Tyson RV, Pearson TH (eds) Modern and ancient continental shelf anoxia. Geological Society, London, pp 119–129. doi:10.1144/GSL.SP.1991.058.01.09

  • Stock CA et al (2011) On the use of IPCC-class models to assess the impact of climate on living marine resources. Prog Oceanogr 88:1–27. doi:10.1016/j.pocean.2010.09.01

    Article  Google Scholar 

  • Stramma L, Schmidtko S, Levin LA, Johnson GC (2010) Ocean oxygen minima expansions and their biological impacts. Deep-Sea Res Pt 1(57):587–595. doi:10.1016/j.dsr.2010.01.005

    Article  Google Scholar 

  • United Nations (1992) Convention on biological diversity. United Nations, New York

    Google Scholar 

  • Wainwright PC, Alfaro ME, Bolnick DI, Hulsey CD (2005) Many-to-one mapping of form to function: a general principle in organismal design? Integr Comp Biol 45:256–262

    Article  PubMed  Google Scholar 

  • Warwick RM, Clarke KR (1991) A comparison of some methods for analysing changes in benthic community structure. J Mar Biol Assoc UK 71:225–244

    Article  Google Scholar 

  • Welsh DT (2003) It’s a dirty job but someone has to do it: the role of marine macrofauna in organic matter turnover and nutrient recycling to the water column. Chem Ecol 19:321–342. doi:10.1080/0275754031000155474

    Article  CAS  Google Scholar 

  • Zuschin M, Harzhauser M, Madnic O (2007) The stratigraphic and sedimentologic framework of fine-scale faunal replacements in the Middle Miocene of the Vienna Basin (Austria). Palaios 22:285–295

    Article  Google Scholar 

Download references

Acknowledgments

Facilities were provided by the Environmental Futures Research Institute and School of Environment, Griffith University. Thanks to Matt Spencer, Angela Coe, Liam Herringshaw for discussions who helped to develop the work; and Angela Coe, Eleanor Maddison, Stephanie Dawn, Paul Scott, and Alice Kennedy for help with fieldwork. Thanks to Andrew Bush, Mark Patzkowsky and Kate Lyons for constructive feedback that helped to improve the paper. We would also like to thank the authors who collected much of the original data on which this work is based. Data are from: ∂18Obel (Saelen et al. 1996; Korte and Hesselbo 2011); ∂13Corg and TOC (Cohen et al. 2004; Kemp et al. 2011; Littler et al. 2010); DOP, [Mo], ∂98/95Mo and Re/Mo ratio (Harding 2004; Pearce et al. 2008), fossil data (Little 1995; Caswell et al. 2009; Caswell 2010; Howard 1984; Martin 2004). Trace fossil data from this study will be made available after a period of embargo, but if interested in this data in the meantime please contact the corresponding author.

Author contribution statement

BAC and CLJF conceived the study. BAC compiled the data and conducted the analyses. BAC and CLJF wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryony A. Caswell.

Additional information

Communicated by Joel Trexler.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caswell, B.A., Frid, C.L.J. Marine ecosystem resilience during extreme deoxygenation: the Early Jurassic oceanic anoxic event. Oecologia 183, 275–290 (2017). https://doi.org/10.1007/s00442-016-3747-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3747-6

Keywords

Navigation