Skip to main content

Advertisement

Log in

The relative importance of vertical soil nutrient heterogeneity, and mean and depth-specific soil nutrient availabilities for tree species richness in tropical forests and woodlands

  • Ecosystem ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The relative importance of resource heterogeneity and quantity on plant diversity is an ongoing debate among ecologists, but we have limited knowledge on relationships between tree diversity and heterogeneity in soil nutrient availability in tropical forests. We expected tree species richness to be: (1) positively related to vertical soil nutrient heterogeneity; (2) negatively related to mean soil nutrient availability; and (3) more influenced by nutrient availability in the upper than lower soil horizons. Using a data set from 60, 20 × 40-m plots in a moist forest, and 126 plots in miombo woodlands in Tanzania, we regressed tree species richness against vertical soil nutrient heterogeneity, both depth-specific (0–15, 15–30, and 30–60 cm) and mean soil nutrient availability, and soil physical properties, with elevation and measures of anthropogenic disturbance as co-variables. Overall, vertical soil nutrient heterogeneity was the best predictor of tree species richness in miombo but, contrary to our prediction, the relationships between tree species richness and soil nutrient heterogeneity were negative. In the moist forest, mean soil nutrient availability explained considerable variations in tree species richness, and in line with our expectations, these relationships were mainly negative. Soil nutrient availability in the top soil layer explained more of the variation in tree species richness than that in the middle and lower layers in both vegetation types. Our study shows that vertical soil nutrient heterogeneity and mean availability can influence tree species richness at different magnitudes in intensively utilized tropical vegetation types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abrams MD, Hulbert LC (1987) Effect of topographic position and fire on species composition in tallgrass prairie in northeast Kansas. Am Midl Nat 117:442–445. doi:10.2307/2425988

    Article  Google Scholar 

  • Amarasekare P (2003) Competitive coexistence in spatially structured environments: a synthesis. Ecol Lett 6(12):1109–1122

    Article  Google Scholar 

  • Aponte C, García LV, Marañón T (2013) Tree species effects on nutrient cycling and soil biota: a feedback mechanism favouring species coexistence. For Ecol Manag 309:36–46

    Article  Google Scholar 

  • Baer SG, Collins SL, Blair JM, Knapp AK, Fiedler AK (2005) Soil heterogeneity effects on tallgrass prairie community heterogeneity: an application of ecological theory to restoration ecology. Restor Ecol 13:413–424

    Article  Google Scholar 

  • Bartels SF, Chen HY (2010) Is understory plant species diversity driven by resource quantity or resource heterogeneity? Ecology 91(7):1931–1938

    Article  PubMed  Google Scholar 

  • Campbell B, Frost P, Byron N (1996) Miombo woodlands and their use: overview and key issues. In: Campbell B (ed) The miombo in transition: woodlands and welfare in Africa. Center for International Forestry Research (CIFOR), Bogor, pp 1–10

    Google Scholar 

  • Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791

    Article  CAS  PubMed  Google Scholar 

  • Chesson P (2000) General theory of competitive coexistence in spatially varying environments. Theor Popul Biol 58:211–237

    Article  CAS  PubMed  Google Scholar 

  • Chisholm RA, Muller-Landau HC, Abdul Rahman K, Bebber DP, Bin Y, Bohlman SA, Bourg NA, Brinks J, Bunyavejchewin S, Butt N, Cao H (2013) Scale-dependent relationships between tree species richness and ecosystem function in forests. J Ecol 101(5):1214–1224

    Article  Google Scholar 

  • Cody ML (1981) Habitat selection in birds: the roles of vegetation structure, competitors, and productivity. Bioscience 31(2):107–113. doi:10.2307/1308252

    Article  Google Scholar 

  • Colón SM, Lugo AE (2006) Recovery of a subtropical dry forest after abandonment of different land uses. Biotropica 38(3):354–364. doi:10.1111/j.1744-7429.2006.00159.x

    Article  Google Scholar 

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc B 345:101–118

    Article  CAS  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199(4335):1302–1310

    Article  CAS  PubMed  Google Scholar 

  • Davenport ML, Nicholson SE (1993) On the relation between rainfall and the normalized difference vegetation index for diverse vegetation types in East Africa. Int J Remote Sens 14(12):2369–2389

    Article  Google Scholar 

  • Desanker P, Frost P, Justice C, Scholes R (1997) The Miombo Network: framework for a terrestrial transect study of land-use and land-cover change in the miombo ecosystems of Central Africa. IGBP Report 41, International Geosphere-Biosphere Programme, Stockholm

    Google Scholar 

  • Dewees PA, Campbell BM, Katerere Y, Sitoe A, Cunningham AB, Angelsen A, Wunder S (2010) Managing the miombo woodlands of southern Africa: policies, incentives and options for the rural poor. J Nat Resour Policy Res 2(1):57–73

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. doi:10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  • Dornbush ME, Wilsey BJ (2010) Experimental manipulation of soil depth alters species richness and co-occurrence in restored tallgrass prairie. J Ecol 98:117–125

    Article  Google Scholar 

  • Dufour A, Gadallah F, Wagner HH, Guisan A, Buttler A (2006) Plant species richness and environmental heterogeneity in a mountain landscape: effects of variability and spatial configuration. Ecography 29(4):573–584

    Article  Google Scholar 

  • Eilts JA, Mittelbach GG, Reynolds HL, Gross KL (2011) Resource heterogeneity, soil fertility, and species diversity: effects of clonal species on plant communities. Am Nat 177:574–588

    Article  PubMed  Google Scholar 

  • Fraterrigo JM, Turner MG, Pearson SM, Dixon P (2005) Effects of past land use on spatial heterogeneity of soil nutrients in southern appalachian forests. Ecol Monogr 75:215–230. doi:10.1890/03-0475

    Article  Google Scholar 

  • Frost PGH (1996) The ecology of miombo woodlands. In: Campbell B (ed) The miombo in transition: woodlands and welfare in Africa. CFIOR, Bogor, pp 11–57

    Google Scholar 

  • Fullen MA, Catt JA (2004) Soil management: problems and solutions. Routledge, New York

    Google Scholar 

  • Furley PA, Rees RM, Ryan CM, Saiz G (2008) Savanna burning and the assessment of long-term fire experiments with particular reference to Zimbabwe. Prog Phys Geogr 32:611–634

    Article  Google Scholar 

  • Gei MG, Powers JS (2013) Do legumes and non-legumes tree species affect soil properties in unmanaged forests and plantations in Costa Rican dry forests? Soil Biol Biochem 57:264–272

    Article  CAS  Google Scholar 

  • Gregory PJ (2008) Plant roots: growth, activity and interactions with the soil. Wiley, Oxford

    Google Scholar 

  • Grundy IM (1996) Regeneration and management of Brachystegia spiciformis Benth. and Julbernardia globiflora (Benth). Troupin in miombo woodland, Zimbabwe. Ph.D thesis submitted for the degree of Doctor of Philosophy at the University of Oxford, UK

  • Hart SC, DeLuca TH, Newman GS, MacKenzie MD, Boyle SI (2005) Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For Ecol Manag 220(1):166–184

    Article  Google Scholar 

  • Higgins SI, Bond WJ, February EC, Bronn A, Euston-Brown DI, Enslin B, Govender N, Rademan L, O’Regan S, Potgieter AL, Scheiter S (2007) Effects of four decades of fire manipulation on woody vegetation structure in savanna. Ecology 88(5):1119–1125

    Article  PubMed  Google Scholar 

  • Hill MJ, Hanan NP (2010) Ecosystem function in savannas: measurement and modeling at landscape to global scales. CRC Press, Boca Raton, New York

    Book  Google Scholar 

  • Hill J, Hill R (2001) Why are tropical rain forests so species rich? Classifying, reviewing and evaluating theories. Prog Phys Geogr 25:326–354

    Article  Google Scholar 

  • Holl KD, Stout VM, Reid JL, Zahawi RA (2013) Testing heterogeneity diversity relationships in tropical forest restoration. Oecologia 173:569–578

    Article  PubMed  Google Scholar 

  • House JI, Archer S, Breshears DD, Scholes RJ (2003) Conundrums in mixed woody–herbaceous plant systems. J Biogeogr 30(11):1763–1777

    Article  Google Scholar 

  • Huston M (1979) A general hypothesis of species diversity. Am Nat 113:81–101. doi:10.2307/2459944

    Article  Google Scholar 

  • Huston M (1980) Soil nutrients and tree species richness in Costa Rican forests. J Biogeogr 7(2):147–157

    Article  Google Scholar 

  • Huston MA (1994) Biological diversity: the coexistence of species. Cambridge University Press, London

    Google Scholar 

  • Islam M, Dey A, Rahman M (2015) Effect of tree diversity on soil organic carbon content in the homegarden agroforestry system of north–eastern Bangladesh. Small-scale For 14(1):91–101

    Article  Google Scholar 

  • Jackson R, Canadell J, Ehleringer J, Mooney H, Sala O, Schulze E (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108(3):389–411

    Article  Google Scholar 

  • Jeffers JNR, Boaler SB (1966) Ecology of a Miombo site, Lupa North Forest Reserve, Tanzania: i. weather and plant growth, 1962–64. J Ecol 54:447–463. doi:10.2307/2257961

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2004) The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology 85(9):2380–2389. doi:10.1890/03-0245

    Article  Google Scholar 

  • John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci 104(3):864–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jumpponen A, Jones KL, Blair J (2010) Vertical distribution of fungal communities in tallgrass prairie soil. Mycologia 102:1027–1041. doi:10.3852/09-316

    Article  PubMed  Google Scholar 

  • Lavelle P, Spain A (2001) Soil ecology. Springer Science and Business Media, Dordretch

    Book  Google Scholar 

  • Liu Y, Duan M, Zhang X, Zhang X, Yu Z, Axmacher JC (2015) Effects of plant diversity, habitat and agricultural landscape structure on the functional diversity of carabid assemblages in the North China Plain. Insect Conserv Divers 8(2):163–176. doi:10.1111/icad.12096

    Article  Google Scholar 

  • Lovett JC, Pocs I (1993) Assessment of the conditions of the catchment forest reserves, a botanical appraisal. Catchment Forest Project Report, vol 93.3. Forest Division ⁄ NORAD, Dar es Salaam

    Google Scholar 

  • Lundholm JT (2009) Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses. J Veg Sci 20:377–391. doi:10.1111/j.1654-1103.2009.05577.x

    Article  Google Scholar 

  • Luoga EJ, Witkowski E, Balkwill K (2002) Harvested and standing wood stocks in protected and communal miombo woodlands of eastern Tanzania. For Ecol Manag 164(1):15–30

    Article  Google Scholar 

  • Luoga EJ, Witkowski ET, Balkwill K (2004) Regeneration by coppicing (resprouting) of miombo (African savanna) trees in relation to land use. For Ecol Manag 189(1):23–35

    Article  Google Scholar 

  • MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42:594–598. doi:10.2307/1932254

    Article  Google Scholar 

  • MacClanahan TR (1996) East African ecosystems and their conservation. Oxford University Press, New York

    Google Scholar 

  • Maestre FT, Bradford MA, Reynolds JF (2006) Soil heterogeneity and community composition jointly influence grassland biomass. J Veg Sci 17:261–270

    Article  Google Scholar 

  • Mooney HA, Bullock SH, Medina E (1995) Introduction. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 1–8

    Chapter  Google Scholar 

  • Munishi PK, Shear TH (2004) Carbon storage in afromontane rain forests of the Eastern Arc mountains of Tanzania: their net contribution to atmospheric carbon. J Trop For Sci 16(1):78–93

    Google Scholar 

  • Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Ann Rev Ecol Syst 17:67–88

    Article  Google Scholar 

  • Musila W, Todt H, Uster D, Dalitz H (2005) Is geodiversity correlated to biodiversity? A case study of the relationship between spatial heterogeneity of soil resources and tree diversity in a Western Kenyan rainforest. In: African Biodiversity. Springer, Netherlands, pp 405–414

    Google Scholar 

  • Økland RH, Økland T, Rydgren K (2001) Vegetation environment relationships of boreal spruce swamp forest in Østmarka Nature Reserve, SE Norway. Sommerfeltia 29:190

    Google Scholar 

  • Page AL (ed) (1982) Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy, Soil Science Society of America, Madison

    Google Scholar 

  • Paoli GD, Curran LM, Slik J (2008) Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155(2):287–299

    Article  PubMed  Google Scholar 

  • Pausas JG, Austin MP (2001) Patterns of plant species richness in relation to different environments: an appraisal. J Veg Sci 12:153–166. doi:10.2307/3236601

    Article  Google Scholar 

  • Pérez-Ramos IM, Roumet C, Cruz P, Blanchard A, Autran P, Garnier E (2012) Evidence for a plant community economics spectrum driven by nutrient and water limitations in a Mediterranean rangeland of southern France. J Ecol 100(6):1315–1327. doi:10.1111/1365-2745.12000

    Article  Google Scholar 

  • Perroni-Ventura Y, Montaña C, García-Oliva F (2006) Relationship between soil nutrient availability and plant species richness in a tropical semi-arid environment. J Veg Sci 17:719–728

    Article  Google Scholar 

  • Persha L, Blomley T (2009) Management decentralization and montane forest conditions in Tanzania. Conserv Biol 23(6):1485–1496

    Article  PubMed  Google Scholar 

  • Pinard MA, Barker MG, Tay J (2000) Soil disturbance and post-logging forest recovery on bulldozer paths in Sabah, Malaysia. For Ecol Manag 130(1–3):213–225. doi:10.1016/S0378-1127(99)00192-9

    Article  Google Scholar 

  • Platts PJ, Omeny PA, Marchant R (2014) AFRICLIM: high resolution climate projections for ecological applications in Africa. Afr J Ecol 53:103–108

    Article  Google Scholar 

  • Questad EJ, Foster BL (2008) Coexistence through spatio-temporal heterogeneity and species sorting in grassland plant communities. Ecol Lett 11:717–726. doi:10.1111/j.1461-0248.2008.01186.x

    Article  PubMed  Google Scholar 

  • Ramı́rez-Marcial N, González-Espinosa M, Williams-Linera G (2001) Anthropogenic disturbance and tree diversity in montane rain forests in Chiapas, Mexico. For Ecol Manag 154(1–2):311–326. doi:10.1016/S0378-1127(00)00639-3

    Article  Google Scholar 

  • Reynolds HL, Mittelbach GG, DARCY-HALL TL, Houseman GR, Gross KL (2007) No effect of varying soil resource heterogeneity on plant species richness in a low fertility grassland. J Ecol 95:723–733

    Article  Google Scholar 

  • Ricklefs RE (1977) Environmental heterogeneity and plant species diversity: a hypothesis. Am Nat 111:376–381. doi:10.2307/2460072

    Article  Google Scholar 

  • Ruiz-Jaen MC, Potvin C (2011) Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. N Phytol 189(4):978–987

    Article  Google Scholar 

  • Sardans J, Peñuelas J (2013) Plant-soil interactions in Mediterranean forest and shrublands: impacts of climatic change. Plant Soil 365:1–33

    Article  CAS  Google Scholar 

  • Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113

    Article  Google Scholar 

  • Schoener TW (1974) Resource partitioning in ecological communities. Science 185(4145):27–39

    Article  CAS  PubMed  Google Scholar 

  • Scholes R, Archer S (1997) Tree-grass interactions in savannas. Ann Rev Ecol Syst 28:517–544

    Article  Google Scholar 

  • Schoolmaster Jr DR (2013) Resource competition and coexistence in heterogeneous metacommunities: many-species coexistence is unlikely to be facilitated by spatial variation in resources. PeerJ 1:e136

    Article  Google Scholar 

  • Shelukindo HB, Semu E, Msanya B, Mwango S, Singh BR, Munishi P (2014) Characterization of some typical soils of miombo woodlands ecosystem of Kitonga forest reserve, Iringa, Tanzania: physico–chemical properties and classification. J Agric Sci Technol AB 4:224–234

    Google Scholar 

  • Siddique I, Vieira ICG, Schmidt S, Lamb D, Carvalho CJR, Figueiredo RDO, Blomberg S, Davidson EA (2010) Nitrogen and phosphorus additions negatively affect tree species diversity in tropical forest regrowth trajectories. Ecology 91(7):2121–2131

    Article  PubMed  Google Scholar 

  • Silva DM, Batalha MA, Cianciaruso MV (2013) Influence of fire history and soil properties on plant species richness and functional diversity in a neotropical savanna. Acta Botanica Brasilica 27:490–497

    Article  Google Scholar 

  • Solomon D, Lehmann J, Kinyangi J, Amelung W, Lobe I, Pell A, Riha S, Ngoze S, Verchot L, Mbugua D (2007) Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems. Glob Change Biol 13(2):511–530

    Article  Google Scholar 

  • Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett 17:866–880

    Article  PubMed  Google Scholar 

  • Stevens MHH, Carson WP (2002) Resource quantity, not resource heterogeneity, maintains plant diversity. Ecol Lett 5:420–426

    Article  Google Scholar 

  • Strømgaard P (1992) Immediate and long-term effects of fire and ash-fertilization on a Zambian miombo woodland soil. Agric Ecosyst Environ 41(1):19–37

    Article  Google Scholar 

  • Tarimo B, Dick ØB, Gobakken T, Totland Ø (2015) Spatial distribution of temporal dynamics in anthropogenic fires in miombo savanna woodlands of Tanzania. Carbon Balance Manag 10(1):1–15

    Article  Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann M, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31(1):79–92

    Article  Google Scholar 

  • Thomas PA, Packham JR (2007) Ecology of woodlands and forests, description, dynamics and diversity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tilman D (1985) The resource-ratio hypothesis of plant succession. Am Nat 125(6):827–852

    Article  Google Scholar 

  • Tilman D, Pacala S (1993) The maintenance of species richness in plant communities. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities. University of Chicago Press, Chicago, pp 13–25

    Google Scholar 

  • Timberlake J, Chidumayo E, Sawadogo L (2010) Distribution and characteristics of African dry forests and woodlands. Managing for products and services, The dry forest and woodlands of Africa, pp 11–42

    Google Scholar 

  • Toledo M, Poorter L, Peña-Claros M, Alarcón A, Balcázar J, Chuviña J, Leaño C, Licona JC, ter Steege H, Bongers F (2011) Patterns and determinants of floristic variation across lowland forests of Bolivia. Biotropica 43:405–413

    Article  Google Scholar 

  • URT (1998) United Republic of Tanzania National Forest Policy. Forestry and Beekeeping Division Ministry of Natural Resources and Tourism, Dar es Salaam

    Google Scholar 

  • White F (1983) The vegetation of Africa, a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa (3 Plates, Northwestern Africa, Northeastern Africa, and Southern Africa, 1: 5,000,000). United Nations Educational, Scientific and Cultural Organization, Paris

    Google Scholar 

  • Wijesinghe DK, John EA, Hutchings MJ (2005) Does pattern of soil resource heterogeneity determine plant community structure? An experimental investigation. J Ecol 93:99–112. doi:10.1111/j.0022-0477.2004.00934.x

    Article  Google Scholar 

  • Williams BM, Houseman GR (2014) Experimental evidence that soil heterogeneity enhances plant diversity during community assembly. Plant Ecol 7:461–469. doi:10.1093/jpe/rtt056

    Article  Google Scholar 

  • Williams M, Ryan CM, Rees RM, Sambane E, Fernando J, Grace J (2008) Carbon sequestration and biodiversity of re-growing miombo woodlands in Mozambique. For Ecol Manag 254:145–155. doi:10.1016/j.foreco.2007.07.033

    Article  Google Scholar 

  • Williams-Linera G (2002) Tree species richness complementarity, disturbance and fragmentation in a Mexican tropical montane cloud forest. Biodivers Conserv 11(10):1825–1843

    Article  Google Scholar 

  • Woollen E, Ryan CM, Williams M (2012) Carbon stocks in an African woodland landscape: spatial distributions and scales of variation. Ecosystems 15(5):804–818

    Article  CAS  Google Scholar 

  • Wright JS (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14

    Article  Google Scholar 

  • Xiankai L, Mo J, Gilliam FS, Zhou G, Yunting Fang Y (2010) Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest. Glob Change Biol 16(10):2688–2700

    Article  Google Scholar 

  • Yang F-F, Li Y-L, Zhou G-Y, Wenigmann K, Zhang D-Q, Wenigmann M, Liu S-Z, Zhang Q-M (2010) Dynamics of coarse woody debris and decomposition rates in an old-growth forest in lower tropical China. For Ecol Manag 259(8):1666–1672

    Article  Google Scholar 

  • Zhou J, Dong B-C, Alpert P, Li H-L, Zhang M-X, Lei G-C, Yu F-H (2012) Effects of soil nutrient heterogeneity on intraspecific competition in the invasive, clonal plant Alternanthera philoxeroides. Ann Bot 109(4):813–818. doi:10.1093/aob/mcr314

    Article  CAS  PubMed  Google Scholar 

  • Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Statistics for biology and health, 1st edn. Springer, New York

    Book  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. doi:10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

  • Zuur AF, Hilbe J, Ieno EN (2013) A beginner’s guide to GLM and GLMM with R: a frequentist and Bayesian perspective for ecologists. Highland Statistics, Newburgh

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Norwegian Government through the Climate Change Impacts, Adaptation and Mitigation programme (CCIAM) at Soikoine University of Agriculture, Tanzania, and the Norwegian State Education Loan Fund. We thankfully acknowledge the field assistance of H. Seki, R. Khasim, J. Herbet, G. Bulenga, O. Bakombezi, G. Swai, and G. Lema. We are indebted to Y. Abeid, M. Mwangoka, and C. Kayombo who helped in plant identification and P. K. T. Munishi for his comments and support at the designing stages. We thank two anonymous reviewers for their constructive comments, Peter Frost for his valuable comments, and copy-editing.

Author contribution statement

DS conceived the idea, DS, SM, and ØT designed the study, DS carried out the study and analysed the data, and DS, SM, and ØT wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deo D. Shirima.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. For this type of study, formal consent is not required.

Additional information

Communicated by Russell K. Monson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirima, D.D., Totland, Ø. & Moe, S.R. The relative importance of vertical soil nutrient heterogeneity, and mean and depth-specific soil nutrient availabilities for tree species richness in tropical forests and woodlands. Oecologia 182, 877–888 (2016). https://doi.org/10.1007/s00442-016-3696-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3696-0

Keywords

Navigation