Skip to main content

Advertisement

Log in

Hierarchical spatial segregation of two Mediterranean vole species: the role of patch-network structure and matrix composition

  • Community ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

According to ecological theory, the coexistence of competitors in patchy environments may be facilitated by hierarchical spatial segregation along axes of environmental variation, but empirical evidence is limited. Cabrera and water voles show a metapopulation-like structure in Mediterranean farmland, where they are known to segregate along space, habitat, and time axes within habitat patches. Here, we assess whether segregation also occurs among and within landscapes, and how this is influenced by patch-network and matrix composition. We surveyed 75 landscapes, each covering 78 ha, where we mapped all habitat patches potentially suitable for Cabrera and water voles, and the area effectively occupied by each species (extent of occupancy). The relatively large water vole tended to be the sole occupant of landscapes with high habitat amount but relatively low patch density (i.e., with a few large patches), and with a predominantly agricultural matrix, whereas landscapes with high patch density (i.e., many small patches) and low agricultural cover, tended to be occupied exclusively by the small Cabrera vole. The two species tended to co-occur in landscapes with intermediate patch-network and matrix characteristics, though their extents of occurrence were negatively correlated after controlling for environmental effects. In combination with our previous studies on the Cabrera-water vole system, these findings illustrated empirically the occurrence of hierarchical spatial segregation, ranging from within-patches to among-landscapes. Overall, our study suggests that recognizing the hierarchical nature of spatial segregation patterns and their major environmental drivers should enhance our understanding of species coexistence in patchy environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amarasekare P (2003) Competitive coexistence in spatially structured environments: a synthesis. Ecol Lett 6:1109–1122

    Article  Google Scholar 

  • Amarasekare P, Nisbet R (2001) Spatial heterogeneity, source-sink dynamics and the local coexistence of competing species. Am Nat 158:572–584

    Article  CAS  PubMed  Google Scholar 

  • Barbosa S, Pauperio J, Searle JB, Alves PC (2013) Genetic identification of Iberian rodent species using both mitochondrial and nuclear loci: application to noninvasive sampling. Mol Ecol Resour 13:43–56

    Article  CAS  PubMed  Google Scholar 

  • Barr DJ, Levy R, Scheepers C, Tily HJ (2013) Random effects structure for confirmatory hypothesis testing: keep it maximal. J Mem Lang 68:255–278

    Article  Google Scholar 

  • Barton K (2014) Package ‘MuMIn’. Model selection and model averaging based on information criteria. R package version 1.10.5 Available at: http://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf

  • Basset A (1995) Body size-related coexistence: an approach through allometric constraints on home-range use. Ecology 76:1027–1035

    Article  Google Scholar 

  • Basset A, De Angelis DL (2007) Body size mediated coexistence of consumers competing for resource in space. Oikos 116:1363–1377

    Article  Google Scholar 

  • Beja P, Schindler S, Santana J, Porto M, Morgado R, Moreira F, Pita R, Mira A, Reino L (2014) Predators and livestock reduce bird nest survival in intensive Mediterranean farmland. Eur J Wildl Res 60:249–258

    Article  Google Scholar 

  • Bennett AF, Radford JQ, Haslem A (2006) Properties of land mosaics: implications for nature conservation in agricultural environments. Biol Conserv 133:250–264

    Article  Google Scholar 

  • Biswas SR, Wagner HH (2012) Landscape contrast: a solution to hidden assumptions in the metacommunity concept? Landscape Ecol 27:621–631

    Article  Google Scholar 

  • Boeye J, Kubisch A, Bonte D (2014) Habitat structure mediates spatial segregation and therefore coexistence. Landscape Ecol 29:593–604

    Article  Google Scholar 

  • Brunner JL, Duerr S, Keesing F, Killilea M, Vuong H, Ostfeld RS (2013) An experimental test of competition among mice, chipmunks, and squirrels in deciduous forest fragments. PLoS One 8:e66798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Centeno-Cuadros A, Román J, Delibes M, Godoy JA (2011) Prisoners in their habitat? Generalist dispersal by habitat specialists: a case study in southern water vole (Arvicola sapidus). PLoS One 6:e24613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chase JM, Liebold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Chesson P (2000) General theory of competitive coexistence in spatially-varying environments. Theor Popul Biol 58:211–237

    Article  CAS  PubMed  Google Scholar 

  • Durant SM (1998) Competition refuges and coexistence: and example from Serengeti carnivores. J Anim Ecol 67:370–386

    Article  Google Scholar 

  • Fedriani JM, Delibes M, Ferreras P, Román J (2002) Local and landscape habitat determinants of water vole distribution in a patchy Mediterranean environment. Ecoscience 9:12–19

    Google Scholar 

  • Fernández N, Román J, Delibes M (2016) Variability in primary productivity determines metapopulation dynamics. P R Soc B Biol Sci 283:20152998

    Article  Google Scholar 

  • Garrido-García JA, Soriguer RC (2014) Topillo de Cabrera Iberomys cabrerae (Thomas, 1906) In: Calzada J, Clavero M, Fernández A (eds) Guía virtual de los indicios de los mamíferos de la Península Ibérica, Islas Baleares y Canarias. Sociedad Española para la Conservación y Estudio de los Mamíferos (SECEM). http://www.secem.es/guiadeindiciosmamiferos/

  • Gelman A (2006) Prior distributions for variance parameters in hierarchical models. Bayesian Anal 1:515–533

    Article  Google Scholar 

  • Gilbert B, Srivastava DS, Kirby KR (2008) Niche partitioning at multiple scales facilitates coexistence among mosquito larvae. Oikos 117:944–950

    Article  Google Scholar 

  • Gillies CS, Hebblewhite M, Nielsen SE, Krawchuk MA, Aldridge CL, Frair JL, Saher DJ, Stevens CE, Jerde CL (2006) Application of random effects to the study of resource selection by animals. J Anim Ecol 75:887–898

    Article  PubMed  Google Scholar 

  • Ginger SM, Hellgren EC, Kasparian MA, Levesque LP, Engle DM, Leslie DM Jr (2003) Niche shift by Virgina opossum following reduction of a putative competitor, the raccoon. J Mammal 84:1279–1291

    Article  Google Scholar 

  • Guillaumet A, Leotard G (2015) Annoying neighbors: multi-scale distribution determinants of two sympatric sibling species of birds. Curr Zool 61:10–22

    Article  Google Scholar 

  • Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22

    Article  Google Scholar 

  • Hadfield JD (2012) MCMCglmm Course Notes. Available online at: http://cran.r-project.org/web/packages/MCMCglmm/vignettes/CourseNotes.pdf

  • Hanski I (1983) Coexistence of competitors in patchy environments. Ecology 64:493–500

    Article  Google Scholar 

  • Hanski I (2008) Spatial patterns of coexistence of competing species in patchy habitat. Theor Ecol 1:29–43

    Article  Google Scholar 

  • Hanski I, Ranta E (1983) Coexistence in a patchy environment: three species of Daphnia in rock pools. J Anim Ecol 52:263–280

    Article  Google Scholar 

  • Holt RD (2001) Species coexistence. Encycl Biodiv 5:413–426

    Article  Google Scholar 

  • Inouye BD (1999) Integrating nested spatial scales: implications for the coexistence of competitors on a patchy resource. J Anim Ecol 68:150–162

    Article  Google Scholar 

  • Johnson PCD (2014) Extension of Nakagawa & Schielzeth’s \(R_{{_{\text{GLMM}} }}^{ 2}\) to random slopes models. Method Ecol Evol 5: 44–946

  • Jorgenson EE (2004) Small mammal use of microhabitat reviewed. J. Mamm 85:531–539

    Article  Google Scholar 

  • Kleinbaum DG, Kupper LL, Muller KE, Nizam A (1998) Applied regression analysis and other multivariate models. Duxbury Press, California

    Google Scholar 

  • Kneitel JM (2012) Are trade-offs among species’ ecological interactions scale dependent? A test using pitcher-plant inquiline species. PLoS One 7:e41809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kneitel JM, Chase JM (2004) Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol Lett 7:69–80

    Article  Google Scholar 

  • Laporta GZ, Sallum AAM (2014) Coexistence mechanisms at multiple scales in mosquito assemblages. BMC Ecol 14:30

    Article  PubMed  PubMed Central  Google Scholar 

  • László Z, Tóthmérész B (2013) Landscape and local effects on multiparasitoid coexistence. Insect Cons Divers 6:354–364

    Article  Google Scholar 

  • Leibold MA, McPeek MA (2006) Coexistence of the niche and neutral perspectives in community ecology. Ecology 87:1399–1410

    Article  PubMed  Google Scholar 

  • MacKenzie DI, Royle JA (2005) Designing efficient occupancy studies: general advice and allocating survey effort. J Appl Ecol 42:1105–1114

    Article  Google Scholar 

  • Morris DW (1987) Ecological scale of habitat use. Ecology 68:362–369

    Article  Google Scholar 

  • Nowakowski AJ, Hyslop NL, Watling JI, Donnelly MA (2013) Matrix type alters structure of aquatic vertebrate assemblages in cypress domes. Biodivers Conserv 22:497–511

    Article  Google Scholar 

  • Oliver M, Luque-Larena JJ, Lambin X (2009) Do rabbits eat voles? Apparent competition, habitat heterogeneity and large-scale coexistence under mink predation. Ecol Lett 12:1201–1209

    Article  PubMed  Google Scholar 

  • Palomo LJ, Gisbert J, Blanco JC (2007) Atlas y Libro Rojo de los Mamíferos Terrestres de España. Dirección General de Conservación de la, Naturaleza-SECEM-SECEMU

    Google Scholar 

  • Peralta D, Leitão I, Ferreira A, Mira A, Beja P, Pita R (2016) Factors affecting southern water vole (Arvicolas sapidus) detection and occupancy probabilities in Mediterranean farmland. Mamm Biol 81:123–129

    Google Scholar 

  • Pita R, Beja P, Mira A (2007) Spatial population structure of the Cabrera vole in Mediterranean farmland: the relative role of patch and matrix effects. Biol Conserv 134:383–392

    Article  Google Scholar 

  • Pita R, Mira A, Moreira F, Morgado R, Beja P (2009) Influence of landscape characteristics on carnivore diversity and abundance in Mediterranean farmland. Agric Ecosyst Environ 132:57–65

    Article  Google Scholar 

  • Pita R, Mira A, Beja P (2010) Spatial segregation of two vole species (Arvicola sapidus and Microtus cabrerae) within habitat patches in a highly fragmented farmland landscape. Eur J Wildlife Res 56:651–662

    Article  Google Scholar 

  • Pita R, Mira A, Beja P (2011a) Assessing habitat differentiation between coexisting species: the role of spatial scale. Acta Oecol 37:124–132

    Article  Google Scholar 

  • Pita R, Mira A, Beja P (2011b) Circadian activity rhythms in relation to season, sex, and interspecific interactions in two Mediterranean voles. Anim Behav 81:1023–1030

    Article  Google Scholar 

  • Pita R, Mira A, Beja P (2013) Influence of land mosaic composition and structure on patchy populations: the case of the water vole (Arvicola sapidus) in Mediterranean farmland. PLoS One 8(7):e69976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11

    Google Scholar 

  • Pocock MJO, White PVL, McClean CJ, Searle JB (2003) The use of accessibility in defining sub-groups of small mammals from point sampled data. Comput Environ Urban syst 27:71–83

    Article  Google Scholar 

  • Poiani KA, Richter BD, Anderson MG, Richter HE (2000) Biodiversity conservation at multiple scales: functional sites, landscapes, and networks. Bioscience 50:133–146

    Article  Google Scholar 

  • R Development Core Team. (2014) R: a language and environment for statistical computing, 3.0.2. R Foundation for Statistical Computing, Vienna, Austria

  • Richter-Boix A, Llorente GA, Montori A (2007) Structure and dynamics of an amphibian metacommunity in two regions. J Anim Ecol 76:607–618

    Article  PubMed  Google Scholar 

  • Román J (2007) Historia natural de la rata de agua (Arvicola sapidus) en Doñana. PhD dissertation, Facultad de Ciencias, Universidad Autonoma de Madrid

  • Román J (2014) Rata de agua Arvicola sapidus Miller, 1908. In: Calzada J, Clavero M, Fernández A. (eds). Guía virtual de los indicios de los mamíferos de la Península Ibérica, Islas Baleares y Canarias. Sociedad Española para la Conservación y Estudio de los Mamíferos (SECEM). http://www.secem.es/guiadeindiciosmamiferos/

  • Rosário IT, Cardoso PE, Mathias ML (2008) Is habitat selection by the Cabrera vole (Microtus cabrerae) related to food preferences? Mamm Biol 73:423–429

    Google Scholar 

  • Schippers P, Hemerik L, Baveco JM, Verboom J (2015) Rapid diversity loss of competing animal species in well-connected landscapes. PLoS One 10(7):e0132383

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt MH, Thies C, Nentwig W, Tscharntke T (2008) Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J Biogeogr 35:157–166

    Google Scholar 

  • Soriguer RC, Amat JA (1988) Feeding of Cabrera vole in west-central Spain. Acta Theriol 33:589–593

    Article  Google Scholar 

  • Sutherland CS, Elston DA, Lambin X (2014) A demographic, spatially explicit patch occupancy model of metapopulation dynamics and persistence. Ecology 95:3149–3160

    Article  Google Scholar 

  • Swihart RK, Atwood TC, Goheen JR, Scheiman DM, Munroe KE, Gehring TM (2003) Patch occupancy of North American mammals: is patchiness in the eye of the beholder? J Biogeogr 30:1259–1279

    Article  Google Scholar 

  • Szabó P, Meszéna G (2006) Spatial ecological hierarchies: coexistence on heterogeneous landscapes via scale niche diversification. Ecosystems 9:1009–1016

    Article  Google Scholar 

  • Telfer S, Piertney SB, Dallas JF, Stewart WA, Marshall F, Gow JL, Lambin X (2003) Parentage assignment detects frequent and large-scale dispersal in water voles. Mol Ecol 12:1939–1949

    Article  CAS  PubMed  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  • Valladares F, Bastias CC, Godoy O, Granda E, Escudero A (2015) Species coexistence in a changing world. Front Plant Sci 6:866

    Article  PubMed  PubMed Central  Google Scholar 

  • Westphal C, Steffan-Dewenter I, Tscharntke T (2006) Bumblebees experience landscapes at different spatial scales: possible implications for coexistence. Oecologia 149:289–300

    Article  PubMed  Google Scholar 

  • Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470

    Article  Google Scholar 

  • Wilson AJ, Réale D, Clements MN, Morrissey MM, Postma E, Walling CA, Kruuk LEB, Nussey DH (2010) An ecologist’s guide to the animal model. J Anim Ecol 79:13–26

    Article  PubMed  Google Scholar 

  • Yu DW, Wilson HB, Pierce NE (2001) An empirical model of species coexistence in a spatially structured environment. Ecology 82:1761–1771

    Article  Google Scholar 

  • Zuur AF, Leno EN, Elphic CS (2010) A protocol for data exploration to avoid common statistical problems. Method Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgments

This study was financed by FEDER funds through the Programa Operacional Factores de Competitividade—COMPETE, and National funds through the Portuguese Foundation for Science and Technology—FCT, within the scope of the projects PERSIST (PTDC/BIA-BEC/105110/2008), NETPERSIST (PTDC/AAG-MAA/3227/2012), and MateFrag (PTDC/BIA-BIC/6582/2014). RP was supported by the FCT grant SFRH/BPD/73478/2010 and SFRH/BPD/109235/2015. PB was supported by EDP Biodiversity Chair. We thank Rita Brito and Marta Duarte for help during field work. We thank Chris Sutherland, Douglas Morris, William Morgan, and Richard Hassall for critical reviews of early versions of the paper. We also thank two anonymous reviewers for helpful comments to improve the paper.

Authors contribution statement

RP, AM, PB conceived and designed the experiments. RP performed the experiments. RP, XL, AM, and PB analyzed the data. RP, XL, AM and PB wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Pita.

Additional information

Communicated by Janne Sundell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pita, R., Lambin, X., Mira, A. et al. Hierarchical spatial segregation of two Mediterranean vole species: the role of patch-network structure and matrix composition. Oecologia 182, 253–263 (2016). https://doi.org/10.1007/s00442-016-3653-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3653-y

Keywords

Navigation