Skip to main content
Log in

Life form-specific gradients in compound-specific hydrogen isotope ratios of modern leaf waxes along a North American Monsoonal transect

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The use of hydrogen isotope ratios (δ2H) of sedimentary n-alkanes from leaf waxes has become an important tool for reconstructing paleoenvironmental and ancient hydrologic conditions. Studies of modern plant waxes can elucidate driving ecological mechanisms behind geologic deposits. Here, we used a transect across the North American Monsoon region of the western USA from Tucson, Arizona to Salt Lake City, Utah to study variations in leaf wax δ2H among co-occurring plants. Three co-occurring life forms were selected: perennial shrub (rabbit brush, Chrysothamnus nauseosus; sagebrush, Artemisia tridentata); tree (Gambel’s oak tree, Quercus gambelii); and annual (sunflower, Helianthus annuus). Our results showed that the distributions and abundances of n-alkanes in perennial plants were similar across all sites and generally did not vary with environmental conditions (e.g., precipitation and temperature). In contrast, variations in n-alkane δ2H were significantly correlated with the fraction of the annual precipitation coming during the summer monsoon period. We use a modified Craig–Gordon model to speculate on the possible drivers of the δ2H values of leaf wax n-alkanes of plants across the region. The model results suggest that the most likely explanation for variation in wax δ2H values was a combination of seasonal source water usage and subsequent environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams DK, Comrie AC (1997) The North American Monsoon. Bull Am Meteorol Soc 78:2197–2213

    Article  Google Scholar 

  • Ball JT (1987) Calculations related to leaf gas exchange. In: Zieger E, Farquhar GD, Cowen IR (eds) Stomatal function. Stanford University Press, Stanford, pp 455–476

    Google Scholar 

  • Barron JA, Metcalfe SE, Addison JA (2012) Response of the North American monsoon to regional changes in ocean surface temperature. Paleoceanography 27:PA3206

  • Bowen GJ (2010) Isoscapes: spatial pattern in isotopic biogeochemistry. Annu Rev Earth Planet Sci 38:161–187

    Article  CAS  Google Scholar 

  • Bowen GJ, Revenaugh J (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res 39:1299

    Google Scholar 

  • Bowen GJ, Wilkinson B (2002) Spatial distribution of δ18O in meteoric precipitation. Geology 30:315–318

    Article  Google Scholar 

  • Bush RT, McInerney FA (2013) Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim Cosmochim Acta 117:161–179

    Article  CAS  Google Scholar 

  • Caldwell MM (1985) Cold desert. In: Mooney HA, Chabot BF (eds) Physiological ecology of North American plant communities. Chapman and Hall, New York

    Google Scholar 

  • Cappa CD, Hendricks MB, DePaolo DJ, Cohen RC (2003) Isotopic fractionation of water during evaporation. J Geophys Res 108:4525–4534

    Article  Google Scholar 

  • Carleton AM, Carpenter DA, Wese PJ (1990) Mechanisms of interannual variability of southwest United States summer precipitation maximum. J Clim 3:999–1015

    Article  Google Scholar 

  • Castañeda IS, Werne JP, Johnson TC, Filley TR (2009) Late Quaternary vegetation history of southeast Africa: the molecular isotopic record from Lake Malawi. Palaeogeogr Palaeoclimatol Palaeoecol 275:100–112

    Article  Google Scholar 

  • Chesson P, Gebauer RLE, Schwinning S, Huntly N, Wiegand K, Ernest MSK, Sher A, Novoplansky A, Weltzin JF (2004) Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141:236–253

    Article  PubMed  Google Scholar 

  • Chikaraishi Y, Naraoka H, Poulson SR (2004) Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants. Phytochemistry 65:1369–1381

    Article  CAS  PubMed  Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen 18 variations in the ocean and marine atmosphere. In: Tongiogi E (ed) Proceedings of a conference on stable isotopes in oceanographic studies and paleotemperatures. Lishi, Spoleto, Italy, pp 9–130

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Diefendorf AF, Freeman KH, Wing SL, Graham HV (2011) Production of n-alkyl lipids in living plants and implications for the geologic past. Geochim Cosmochim Acta 75:7472–7485

    Article  CAS  Google Scholar 

  • Dodd RS, Afzal-Rafii Z (2000) Habitat-related adaptive properties of plant cuticular lipids. Evolution 54:1438–1444

    Article  CAS  PubMed  Google Scholar 

  • Dodd RS, Poveda MM (2003) Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis. Biochem Syst Ecol 31:1257–1270

    Article  CAS  Google Scholar 

  • Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer JR, Dawson TE (1992) Water uptake by plants: perspectives from stable isotopes. Plant Cell Environ 15:1073–1082

    Article  CAS  Google Scholar 

  • Ehleringer J, Mooney HA (1983) Productivity of desert and Mediterranean-climate plants. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology IV. Springer, Berlin Heidelberg New York, pp 205–231

    Chapter  Google Scholar 

  • Ehleringer JR, Phillips SL, Schuster WSF, Sandquist DR (1991) Differential utilization of summer rains by desert plants. Oecologia 88:430–434

    Article  Google Scholar 

  • Ehleringer JR, Evans RD, Williams D (1998) Assessing sensitivity to change in desert ecosystems—a stable isotope approach. In: Griffiths H (ed) Stable isotopes integration of biological, ecological, and geochemical processes. BIOS Scientific, Oxford, pp 223–237

    Google Scholar 

  • English NB, Dettman DL, Williams DG (2010) A 26-year stable isotope record of humidity and El Niño-enhanced precipitation in the spines of saguaro cactus, Carnegiea gigantea. Palaeogeogr Palaeoclimatol Palaeoecol 293:108–119

    Article  Google Scholar 

  • Epstein S, Yapp CJ (1976) Climatic implications of the D/H ratio of hydrogen in C-H groups in tree cellulose. Earth Planet Sci Lett 30:252–261

    Article  CAS  Google Scholar 

  • Ernst N, Peterse F, Breitenbach SFM, Syiemlieh HJ, Eglinton TI (2013) Biomarkers record environmental changes along an altitudinal transect in the wettest place on Earth. Org Geochem 60:93–99

    Article  CAS  Google Scholar 

  • Everett RL, Tueller PT, Davis JB, Brunner AD (1980) Plant phenology in galleta–shadescale and galleta–sagebrush associations. J Range Manage 33:446–450

    Article  Google Scholar 

  • Fawcett PJ, Werne JP, Anderson RS, Heikoop JM, Brown ET, Berke MA, Smith SJ, Goff F, Donohoo-Hurley L, Cisneros-Dozal LM, Schouten S, Sinninghe Damsté JS, Huang Y, Toney J, Fessenden J, WoldeGabriel G, Atudorei V, Geissman JW, Allen CD (2011) Extended megadroughts in the southwestern United States during Pleistocene interglacials. Nature 470:518–521

    Article  CAS  PubMed  Google Scholar 

  • Feakins SJ, Sessions AL (2010) Controls on the D/H ratios of plant leaf waxes in an arid ecosystem. Geochim Cosmochim Acta 74:2128–2141

    Article  CAS  Google Scholar 

  • Flanagan LB (1993) Environmental and biological influences on the stable oxygen and hydrogen isotopic composition of leaf water. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon-water relations. Academic Press, San Diego, pp 71–90

    Chapter  Google Scholar 

  • Flanagan LB, Ehleringer JR (1991) Stable isotope composition of stem and leaf water: applications to the study of plant water use. Funct Ecol 5:270–277

    Article  Google Scholar 

  • Flanagan LB, Ehleringer JR, Marshall JD (1992) Differential uptake of summer precipitation among co-occurring trees and shrubs in a pinyon-juniper woodland. Plant Cell Environ 15:831–836

    Article  Google Scholar 

  • Fonteyn PJ, Mahall BE (1978) Competition among desert perennials. Nature 275:544–545

    Article  Google Scholar 

  • Forseth IN, Ehleringer JR, Werk KS, Cook CS (1984) Field water relations of Sonoran Desert annuals. Ecology 65:1436–1444

    Article  Google Scholar 

  • Griffin D, Woodhouse CA, Meko DM, Stahle DW, Faulstich HL, Carrillo CL, Touchan R, Castro CL, Leavitt SW (2013) North American monsoon precipitation reconstructed from tree-ring latewood. Geophys Res Lett. doi:10.1002/grl.50184

    Google Scholar 

  • Guenther F, Aichner B, Siegwolf R, Xu B, Yao T, Gleixner G (2013) A synthesis of hydrogen isotope variability and its hydrological significance at the Qinghai–Tibetan Plateau. Quatern Int 313–314:3–16

    Article  Google Scholar 

  • Higgins RW, Shi W (2001) Intercomparison of the principal modes of interannual and intraseasonal variability of the North American monsoon system. J Clim 14:403–417

    Article  Google Scholar 

  • Higgins RW, Chen Y, Douglas AV (1999) Interannual variability of the North American warm season precipitation regime. J Clim 12:653–680

    Article  Google Scholar 

  • Hoffmann B, Kahmen A, Cernusak LA, Arndt SK, Sachse D (2013) Abundance and distribution of leaf wax n-alkanes in leaves of Acacia and Eucalyptus trees along a strong humidity gradient in northern Australia. Org Geochem 62:62–67

    Article  CAS  Google Scholar 

  • Hou J, D’Andrea WJ, MacDonald D, Huang Y (2007) Hydrogen isotopic variability in leaf waxes among terrestrial and aquatic plants around Blood Pond, Massachusetts (USA). Org Geochem 38:977–984

    Article  CAS  Google Scholar 

  • Hou J, D’Andrea WJ, Huang Y (2008) Can sedimentary leaf waxes record D/H ratios of continental precipitation? Field, model, and experimental assessments. Geochim Cosmochim Acta 72:3503–3517

    Article  CAS  Google Scholar 

  • Huang Y, Shuman B, Wang Y, Webb T III (2004) Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and environmental change: a surface sediment test. J Paleolimnol 31:363–375

    Article  Google Scholar 

  • Hughen KA, Eglinton TI, Xu L, Makou M (2004) Abrupt tropical vegetation response to rapid climate changes. Science 304:1955–1959

    Article  CAS  PubMed  Google Scholar 

  • Kahmen A, Simonin K, Tu KP, Merchant A, Callister A, Siegwolf R, Dawson TE, Arndt SK (2008) Effects of environmental parameters, leaf physiological properties and leaf water relations on leaf water δ18O enrichment in different Eucalyptus species. Plant Cell Environ 31:738–751

    Article  CAS  PubMed  Google Scholar 

  • Kahmen A, Dawson TE, Vieth A, Sachse D (2011) Leaf wax n-alkane δD values are determined early in the ontogeny of Populus trichocarpa leaves when grown under controlled environmental conditions. Plant Cell Environ 34:1639–1651

    Article  CAS  PubMed  Google Scholar 

  • Kahmen A, Hoffmann B, Schefuß E, Arndt SK, Cernusak LA, West JB, Sachse D (2013a) Leaf water deuterium enrichment shapes leaf wax n-alkane δD values of angiosperm plants. II. Observational evidence and global implications. Geochim Cosmochim Acta 111:50–63

    Article  CAS  Google Scholar 

  • Kahmen A, Schefuß E, Sachse D (2013b) Leaf water deuterium enrichment shapes leaf wax n-alkane δD values of angiosperm plants. I. Experimental evidence and mechanistic insights. Geochim Cosmochim Acta 111:39–49

    Article  CAS  Google Scholar 

  • Leaney FW, Osmond CB, Allison GB, Ziegler H (1985) Hydrogen-isotope composition of leaf water in C3 and C4 plants: its relationship to the hydrogen-isotope composition of dry matter. Planta 164:215–220

    Article  CAS  PubMed  Google Scholar 

  • Lin G, Phillips SL, Ehleringer JR (1996) Monsoonal precipitation responses of shrubs in a cold desert community on the Colorado plateau. Oecologia 106:8–17

    Article  Google Scholar 

  • Maddox RA, McCollum DM, Howard KW (1995) Large-scale patterns associated with severe summertime thunderstorms over central Arizona. Weather Forecast 10:763–778

    Article  Google Scholar 

  • Majoube M (1971) Fractionment en oxygene-18 et en deuterium entré l’eau at sa vapeur. J Chim Phys 10 68:1423–1436

    CAS  Google Scholar 

  • Manning SJ, Barbour MG (1988) Root systems, spatial patterns, and competition for soil moisture between two desert subshrubs. Am J Bot 75:885–893

    Article  Google Scholar 

  • Mitchell VL (1976) The regionalization of climate in the western United States. J Appl Meteorol 15:920–927

    Article  Google Scholar 

  • Mitchell DL, Ivanova D, Rabin R, Brown TJ, Redmond K (2002) Gulf of California sea surface temperature and the North American monsoon: mechanistic implication from observation. J Clim 15:2261–2281

    Article  Google Scholar 

  • Poynter JG, Eglinton G (1990) Molecular composition of three sediments from hole 717C: the Bengal fan. In: Cochran JR, Stow DAV et al (eds) Proceedings of the Ocean Drilling Program scientific results, pp 155–161

  • Reynolds J, Kemp P, Ogle K, Fernández R (2004) Modifying the ‘pulse–reserve’ paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Oecologia 141:194–210

    Article  PubMed  Google Scholar 

  • Riederer M, Schneider G (1990) The effect of the environment on the permeability and composition of Citrus leaf cuticles. Planta 180:154–165

    Article  CAS  PubMed  Google Scholar 

  • Roden JS, Ehleringer JR (1999) Observations of hydrogen and oxygen isotopes in leaf water confirm the Craig–Gordon model under wide-ranging environmental conditions. Plant Physiol 120:1165–1174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roden JS, Lin G, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Acta 64:21–35

    Article  CAS  Google Scholar 

  • Rommerskirchen F, Eglinton G, Dupont L, Güntner U, Wenzel C, Rullkötter J (2003) A north to south transect of Holocene southeast Atlantic continental margin sediments: relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records. Geochem Geophys Geosyst 4:1101

    Google Scholar 

  • Rozanski K, Sonntag C, Münnich KO (1982) Factors controlling stable isotope composition of European precipitation. Tellus 34:142–150

    Article  CAS  Google Scholar 

  • Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic patterns in modem global precipitation. In: Swart PK, Lohmann KC, McKenzie JA, Savin S (eds) Climate change in continental isotopic records. AGU monograph, Washington, pp 1–36

    Chapter  Google Scholar 

  • Ryel RJ, Leffler AJ, Peek MS, Ivans CY, Caldwell MM (2004) Water conservation in Artemisia tridentata through redistribution of precipitation. Oecologia 141:335–345

    Article  CAS  PubMed  Google Scholar 

  • Sachse D, Radke J, Gleixner G (2004) Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability. Geochim Cosmochim Acta 68:4877–4889

    Article  CAS  Google Scholar 

  • Sachse D, Radke J, Gleixner G (2006) δD values of individual n-alkanes from terrestrial plants along a climatic gradient—implications for the sedimentary biomarker record. Org Geochem 37:469–483

    Article  CAS  Google Scholar 

  • Sachse D, Kahmen A, Gleixner G (2009) Significant seasonal variation in the hydrogen isotopic composition of leaf-wax lipids for two deciduous tree ecosystems (Fagus sylvativa and Acer pseudoplatanus). Org Geochem 40:732–742

    Article  CAS  Google Scholar 

  • Sachse D, Gleixner G, Wilkes H, Kahmen A (2010) Leaf wax n-alkane δD values of field-grown barley reflect leaf water δD values at the time of leaf formation. Geochim Cosmochim Acta 74:6741–6750

    Article  CAS  Google Scholar 

  • Sachse D, Billault I, Bowen GJ, Chikaraishi Y, Dawson TE, Feakins SJ, Freeman KH, Magill CR, McInerney FA, van der Meer MTJ, Polissar P, Robins RJ, Sachs JP, Schmidt H-L, Sessions AL, White JWC, West JB, Kahmen A (2012) Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu Rev Earth Planet Sci 40:221–249

    Article  CAS  Google Scholar 

  • Sachse D, Dawson TE, Kahmen A (2015) Seasonal variation of leaf wax n-alkane production and δ2H values from the evergreen oak tree, Quercus agrifolia. Isotop Environ Health Stud 51:1–19

    Article  Google Scholar 

  • Sauer PE, Eglinton TI, Hayes JM, Schimmelmann A, Sessions AL (2001) Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochim Cosmochim Acta 65:213–222

    Article  CAS  Google Scholar 

  • Schefuß E, Schouten S, Schneider RR (2005) Central African hydrologic changes during the past 20,000 years. Nature 437:1003–1006

    Article  PubMed  Google Scholar 

  • Schefuß E, Kuhlmann H, Mollenhauer G, Prange M, Patzold J (2011) Forcing of wet phases in southeast Africa over the past 17,000 years. Nature 480:509–512

    Article  PubMed  Google Scholar 

  • Schimmelmann A, Lewan MD, Wintsch RP (1999) D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III. Geochim Cosmochim Acta 63:3751–3766

    Article  CAS  Google Scholar 

  • Schmidt H-L, Werner R, Eisenreich W (2003) Systematics of 2H patterns in natural compounds and its importance for the elucidation of biosynthetic pathways. Phytochem Rev 2:61–85

    Article  CAS  Google Scholar 

  • Schönherr J (1976) Water permeability of isolated cuticular membranes: the effect of pH and cations on diffusion, hydrodynamic permeability and size of polar pores in the cutin matrix. Planta 128:113–126

    Article  PubMed  Google Scholar 

  • Schreiber L, Riederer M (1996) Ecophysiology of cuticular transpiration: comparative investigation of cuticular water permeability of plant species from different habitats. Oecologia 107:426–432

    Article  Google Scholar 

  • Schwinning S, Sala OE (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–220

    Article  PubMed  Google Scholar 

  • Schwinning S, Starr BI, Ehleringer JR (2005a) Summer and winter drought in a cold desert ecosystem (Colorado Plateau). Part I. Effects on soil water and plant water uptake. J Arid Environ 60:547–566

    Article  Google Scholar 

  • Schwinning S, Starr BI, Ehleringer JR (2005b) Summer and winter drought in a cold desert ecosystem (Colorado Plateau). Part II. Effects on plant carbon assimilation and growth. J Arid Environ 61:61–78

    Article  Google Scholar 

  • Sessions AL, Burgoyne TW, Schimmelmann A, Hayes JM (1999) Fractionation of hydrogen isotopes in lipid biosynthesis. Org Geochem 30:1193–1200

    Article  CAS  Google Scholar 

  • Sessions AL (2006) Seasonal changes in D/H fractionation accompanying lipid biosynthesis in Spartina alterniflora. Geochim Cosmochim Acta 70:2153–2162

    Article  CAS  Google Scholar 

  • Smith FA, Freeman KH (2006) Influence of physiology and climate on δD of leaf wax n-alkanes from C3 and C4 grasses. Geochim Cosmochim Acta 70:1172–1187

    Article  CAS  Google Scholar 

  • Tipple BJ, Pagani M (2013) Environmental control on eastern broadleaf forest species’ leaf wax distributions and D/H ratios. Geochim Cosmochim Acta 111:64–77

    Article  CAS  Google Scholar 

  • Tipple BJ, Berke MA, Doman CE, Khachaturyan S, Ehleringer JR (2013) Leaf-wax n-alkanes record the plant–water environment at leaf flush. In: Proc Natl Acad Sci USA 110(7):2659-2664

  • Tipple BM, Berke MA, Hambach B, Roden J, Ehleringer JR (2014) Predicting leaf wax n-alkane 2H/1H ratios: controlled water source and humidity experiments with hydroponically grown trees confirm predictions of Craig–Gordon model. Plant Cell Environ 38:1035–1047

    Article  PubMed  Google Scholar 

  • White JWC, Cook ER, Lawrence JR, Wallace SB (1985) The D/H ratios of sap in trees: implications for water sources and tree ring D/H ratios. Geochim Cosmochim Acta 49:237–246

    Article  CAS  Google Scholar 

  • Williams DG, Ehleringer JR (2000) Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecol Monogr 70:517–537

    Google Scholar 

  • Wurster CM, Patterson WP, McFarlane DA, Wassenaar LI, Hobson KA, Athfield NB, Bird MI (2008) Stable carbon and hydrogen isotopes from bat guano in the Grand Canyon, USA, reveal Younger Dryas and 8.2 ka events. Geology 36:683–686

    Article  CAS  Google Scholar 

  • Yakir D (1998) Oxygen-18 of leaf water: a crossroad for plant-associated isotopic signals. In. In: Griffiths H (ed) Stable isotopes: integration of biological and geochemical processes. BIOS Scientific, Oxford, pp 147–168

    Google Scholar 

  • Zhang X, Gillespie AL, Sessions AL (2009) Large D/H variations in bacterial lipids reflect central metabolic pathways. Proc Natl Acad Sci USA 106:12580–12586

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou Y, Grice K, Chikaraishi Y, Stuart-Williams H, Farquhar GD, Ohkouchi N (2011) Temperature effect on leaf water deuterium enrichment and isotopic fractionation during leaf lipid biosynthesis: results from controlled growth of C3 and C4 land plants. Phytochemistry 72:207–213

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Susan Bush for invaluable help in the field and Brad Erkkila in the laboratory. Additionally the manuscript was improved with helpful comments from three anonymous reviewers as well as discussions with Rosemary Bush. All analyses were performed at the University of Utah. This research was supported by NSF IOS grant 1052551 (to J. E. and B. T.).

Author contribution statement

M. A. B., B. J. T., and J. R. E. originally formulated the research idea; M. A. B. conducted the fieldwork; M. A. B. and B. H. generated the isotopic data; M. A. B. performed the statistical analyses; M. A. B. wrote the manuscript with input from B. J. T., B. H., and J. R. E. All authors agree to this submission and vouch that this work has not been submitted in full or in part to any other journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa A. Berke.

Additional information

Communicated by Nina Buchmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berke, M.A., Tipple, B.J., Hambach, B. et al. Life form-specific gradients in compound-specific hydrogen isotope ratios of modern leaf waxes along a North American Monsoonal transect. Oecologia 179, 981–997 (2015). https://doi.org/10.1007/s00442-015-3432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3432-1

Keywords

Navigation