Skip to main content

Advertisement

Log in

Costs and benefits of plant allelochemicals in herbivore diet in a multi enemy world

  • Plant-microbe-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Sequestration of plant defensive chemicals by herbivorous insects is a way of defending themselves against their natural enemies. Such herbivores have repeatedly evolved bright colours to advertise their unpalatability to predators, i.e. they are aposematic. This often comes with a cost. In this study, we examined the costs and benefits of sequestration of iridoid glycosides (IGs) by the generalist aposematic herbivore, the wood tiger moth, Parasemia plantaginis. We also asked whether the defence against one enemy (a predator) is also effective against another (a parasitoid). We found that the larvae excrete most of the IGs and only small amounts are found in the larvae. Nevertheless, the amounts present in the larvae are sufficient to deter ant predators and also play a role in defence against parasitoids. However, excreting and handling these defensive plant compounds is costly, leading to longer development time and lower pupal mass. Interestingly, the warning signal efficiency and the amount of IGs in the larvae of P. plantaginis are negatively correlated; larvae with less efficient warning signals contain higher levels of chemical defence compounds. Our results may imply that there is a trade-off between production and maintenance of coloration and chemical defence. Although feeding on a diet containing IGs can have life-history costs, it offers multiple benefits in the defence against predators and parasitoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott J (2014) Self-medication in insects: current evidence and future perspectives. Ecol Entomol 39:273–280

    Article  Google Scholar 

  • Barbosa P, Saunders JA, Kemper J, Trumbule R, Olechno J, Martinat P (1986) Plant allelochemicals and insect parasitoids. Effects of nicotine on Cotesia congregata (Say) (Hymenoptera, Braconidae) and Hyposoter annulipes (Cresson) (Hymenoptera, Ichneumonidae). J Chem Ecol 12:1319–1328

    Article  CAS  PubMed  Google Scholar 

  • Barton KE (2007) Early ontogenetic patterns in chemical defense in Plantago (Plantaginaceae): genetic variation and trade-offs. Am J Bot 94:56–66

    Article  CAS  PubMed  Google Scholar 

  • Bellman H (2007) Vlinders, rupsen en waardplanten. Tirion, Baarn

    Google Scholar 

  • Berenbaum M, Zangerl AR (1993) Furanocoumarin metabolism in Papilio polyxenes: biochemistry, genetic variability, and ecological significance. Oecologia 95:370–375

    Article  Google Scholar 

  • Blount JD, Speed MP, Ruxton GD, Stephens PA (2009) Warning displays may function as honest signals of toxicity. Proc R Soc Lond B 276:871–877

    Article  Google Scholar 

  • Bowers MD (1988) Chemistry and coevolution: Iridoid glycosides, plants and herbivorous insects. In: Spencer K (ed) Chemical Mediation of Coevolution. Academic, New York, pp 133–165

    Chapter  Google Scholar 

  • Bowers MD (1991) Iridoid glycosides. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites. Academic, San Diego, pp 297–325

    Chapter  Google Scholar 

  • Bowers MD (1992) Unpalatability and the cost of chemical defense in insects. In: Roitberg BD, Isman MB (eds) Chemical ecology of insects: an evolutionary approach. Chapman and Hall, New York, pp 216–244

    Google Scholar 

  • Bowers MD (1993) Aposematic caterpillars: life-styles of the warningly colored and unpalatable. In: Stamp NE, Casey TM (eds) Caterpillars: ecological and evolutionary constraints on foraging. Chapman & Hall, New York, pp 331–371

    Google Scholar 

  • Bowers MD, Collinge SK (1992) Fate of iridoid glycosides in different life stages of the buckeye, Junonia coenia (Lepidoptera, Nymphalidae). J Chem Ecol 18:817–831

    Article  CAS  PubMed  Google Scholar 

  • Bowers MD, Collinge SK, Gamble SE, Schmitt J (1992) Effects of genotype, habitat, and seasonal-variation on iridoid glycoside content of Plantago lanceolata (Plantaginaceae) and the implications for insect herbivores. Oecologia 91:201–207

    Article  Google Scholar 

  • Bowers MD, Stamp NE (1992) Chemical variation within and between individuals of Plantago lanceolata (Plantaginaceae). J Chem Ecol 18:985–995

    Article  CAS  PubMed  Google Scholar 

  • Bowers MD, Stamp NE (1993) Effects of plant-age, genotype, and herbivory on Plantago performance and chemistry. Ecology 74:1778–1791

    Article  Google Scholar 

  • Bowers MD, Stamp NE (1997) Fate of host-plant iridoid glycosides in lepidopteran larvae of Nymphalidae and Arctiidae. J Chem Ecol 23:2955–2965

    Article  CAS  Google Scholar 

  • Brattsten LB (1988) Enzymic adaptations in leaf-feeding insects to host-plant allelochemicals. J Chem Ecol 5:1919–1939

    Article  Google Scholar 

  • Camara MD (1997) Predator responses to sequestered plant toxins in buckeye caterpillars: are tritrophic interactions locally variable? J Chem Ecol 23:2093–2106

    Article  CAS  Google Scholar 

  • Cornell HV, Hawkins BA (1995) Survival patterns and mortality sources of herbivorous insects: some demographic trends. Am Nat 145:563–593

    Article  Google Scholar 

  • Cornell HV, Hawkins BA, Hochberg ME (1998) Towards an empirically-based theory of herbivore demography. Ecol Entomol 23:340–349

    Article  Google Scholar 

  • Darst CR, Cummings ME, Cannatella DC (2006) A mechanism for diversity in warning signals: consipicuouness versus toxicity in poison frogs. Proc Natl Acad Sci USA 103:5852–5857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dempster JP (1983) The natural control of populations of butterflies and moths. Biol Rev 58:461–481

    Article  Google Scholar 

  • Després L, David JP, Gallet C (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol Evol 22:298–307

    Article  PubMed  Google Scholar 

  • Duff RB, Bacon JSD, Mundie CM, Farmer VC, Russell JD, Forrester AR (1965) Catalpol and methylcatalpol: naturally ocurring glycosides in Plantago and Buddleia species. Biochem J 96:1–5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duffey SS (1980) Sequestration of plant natural products by insects. Annu Rev Entomol 25:447–477

    Article  CAS  Google Scholar 

  • Dyer LA (1995) Tasty generalists and nasty specialists? Antipredator mechanisms in tropical lepidopteran larvae. Ecology 76:1483–1496

    Article  Google Scholar 

  • Dyer LA (1997) Effectiveness of caterpillar defenses against three species of invertebrate predators. J Res Lepid 34:48–68

    Google Scholar 

  • Dyer LA, Bowers MD (1996) The importance of sequestered iridoid glycosides as a defense against an ant predator. J Chem Ecol 22:1527–1539

    Article  CAS  PubMed  Google Scholar 

  • Dyer LA, Dodson CD, Gentry G (2003a) A bioassy for insect deterrent compounds found in plant and animal tissues. Phytochem Anal 14:381–388

    Article  CAS  PubMed  Google Scholar 

  • Dyer LA et al (2003b) Synergistic effects of three Piper amides on generalist and specialist herbivores. J Chem Ecol 29:2499–2514

    Article  CAS  PubMed  Google Scholar 

  • English-Loeb GM, Brody AK, Karban R (1993) Host-plant-mediated interactions between a generalist folivore and its tachinid parasitoid. J Anim Ecol 63:465–471

    Article  Google Scholar 

  • Friman V-P, Lindstedt C, Hiltunen T, Laakso J, Mappes J (2009) Predation on multiple trophic levels shapes the evolution of pathogen virulence. PLoS ONE 4:e6761

    Article  PubMed Central  PubMed  Google Scholar 

  • Fuchs A, Bowers MD (2004) Patterns of iridoid glycoside production and induction in Plantago lanceolata and the importance of plant age. J Chem Ecol 30:1723–1741

    Article  CAS  PubMed  Google Scholar 

  • Gauld ID, Gaston KJ (1994) The taste of enemy-free space: parasitoids and nasty hosts. In: Hawkins BA, Sheehan W (eds) Parasitoid community ecology. Oxford University Press, New York, pp 279–299

    Google Scholar 

  • Gentry G, Dyer LA (2002) On the conditional nature of neotropical caterpillar defenses against their natural enemies. Ecology 83:3108–3119

    Article  Google Scholar 

  • Guilford T, Dawkins MS (1993) Are warning colors handicaps? Evolution 47:400–416

    Article  Google Scholar 

  • Gunasena GH, Vinson SB, Williams HJ (1990) Effects of nicotine on growth, development, and survival of the tobacco budworm (Lepidoptera, Noctuidae) and the parasitoid Campoletis sonorensis (Hymenoptera, Ichneumonidae). J Econ Entomol 83:1777–1782

    Article  CAS  Google Scholar 

  • Hare JF, Eisner T (1993) Pyrrolizidine alkaloid deters ant predators of Utetheisa ornatix eggs-effects of alkaloid concentration, oxidation-state, and prior exposure of ants to alkaloid-laden prey. Oecologia 96:9–18

    Article  Google Scholar 

  • Higginson AD, Delf J, Ruxton GD, Speed MP (2011) Growth and reproductive costs of larval defence in the aposematic lepidopteran Pieris brassicae. J Anim Ecol 80:384–392

    Article  PubMed  Google Scholar 

  • Honek A (1993) Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66:483–792

    Article  Google Scholar 

  • Johnson KS (1999) Comparative detoxification of plant (Magnolia virginiana) allelochemicals by generalist and specialist Saturniid silkmoths. J Chem Ecol 25:253–269

    Article  CAS  Google Scholar 

  • Jones CG, Whitman DW, Compton SJ, Silk PJ, Blum MS (1989) Reduction in diet breadth results in sequestration of plant chemicals and increases efficacy of chemical defense in a generalist grasshopper. J Chem Ecol 15:1811–1822

    Article  CAS  PubMed  Google Scholar 

  • Kraaijeveld AR, Godfray HCJ (1997) Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389:278–280

    Article  CAS  PubMed  Google Scholar 

  • Lampert EC, Bowers MD (2010) Host plant influences on iridoid glycoside sequestration of generalist and specialist caterpillars. J Chem Ecol 36:1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Lanza J (1988) Ant preferences for passiflora nectar mimics that contain amino acids. Biotropica 20:341–344

    Article  Google Scholar 

  • Lee TJ, Marples NM, Speed MP (2010) Can dietary conservatism explain the primary evolution of aposematism? Anim Behav 79:63–74

    Article  Google Scholar 

  • Leimar O, Enquist M, Sillén-Tullberg B (1986) Evolutionary stability of aposematic colorarion and prey unprogitability: a theoratical analysis. Am Nat 128:469–490

    Article  Google Scholar 

  • Leraut P (ed) (2006) Moths of Europe Volume 1: Saturnids, Lasiocampids, Hawkmoths, Tiger Moths. NAP Editions, Verrieres le Buisson

  • Lindsey J (2006) Ecology of Commanster. http://www.commanster/insects/bugs/spbugs/saldula.saltatoria.html

  • Lindstedt C (2008) Maintenance of variationin warning signals under opposing selection pressures. PhD thesis, University of Jyväskylä, Jyväskylä

  • Lindstedt C, Lindstrom L, Mappes J (2008) Hairiness and warning colours as components of antipredator defence: additive or interactive benfits? Anim Behav 75:1703–1713

    Article  Google Scholar 

  • Lindstedt C, Lindström L, Mappes J (2009) Thermoregulation can constrain effective warning signal expression. Evolution 63:469–478

    Article  PubMed  Google Scholar 

  • Lindstedt C, Reudler Talsma JH, Ihalainen E, Lindstrom L, Mappes J (2010) Diet quality affects warning coloration indirectly: excretion costs in a generalist herbivore. Evolution 64:68–78

    Article  PubMed  Google Scholar 

  • Marak HB, Biere A, van Damme JMM (2000) Direct and correlated responses to selection on iridoid glycosides in Plantago lanceolata L. J Evol Biol 13:985–996

    Article  CAS  Google Scholar 

  • Marttila O, Saarinen K, Haahtela T, Pajari M (1996) Suomen kiitäjät ja kehrääjät. Kirjayhtymä, Porvoo

    Google Scholar 

  • Mason PA, Singer MS (2015) Defensive mixology: combining acquired chemicals towards defence. Funct Ecol 29:441–450

    Article  Google Scholar 

  • Molleman F, Kaasik A, Whitaker MR, Carey JR (2012) Partitioning variation in duration of ant feeding bouts can offer insights into the palatability of insects: experiments of African fruit-feeding butterflies. J Res Lepid 45:65–75

    Google Scholar 

  • Nieminen M, Suomi J, van Nouhuys S, Sauri P, Riekkola ML (2003) Effect of iridoid glycoside content on oviposition host plant choice and parasitism in a specialist herbivore. J Chem Ecol 29:823–844

    Article  CAS  PubMed  Google Scholar 

  • Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera. Annu Rev Entomol 47:57–92

    Article  CAS  PubMed  Google Scholar 

  • Nokelainen O, Valkonen J, Lindstedt C, Mappes J (2012) Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. J Anim Ecol 83:598–605

    Article  Google Scholar 

  • Ode PJ (2006) Plant chemistry and natural enemy fitness: effects on herbivores and natural enemy interactions. Annu Rev Entomol 51:161–185

    Article  Google Scholar 

  • Ojala K, Julkunen-Titto R, Lindstrom L, Mappes J (2005) Diet affects the immune defence and life-history traits of an Arctiid moth Parasemia plantaginis. Evol Ecol Res 7:1153–1170

    Google Scholar 

  • Ojala K, Lindstrom L, Mappes J (2007) Life-history constraints and warning signal expression in an arctiid moth. Funct Ecol 21:1162–1167

    Article  Google Scholar 

  • Opitz SEW, Jensen SR, Müller C (2010) Sequestration of glucosinolates and iridoid glucosides in sawfly species of the genus Athalia and their role in defense against ants. J Chem Ecol 36:148–157

    Article  CAS  PubMed  Google Scholar 

  • Pabis K (2007) New species of Lepidoptera for the Biogradska Gora National Park, Montenegra. Glas Republ Zavoda Zas Prirode Podgor 29–30:167–169

    Google Scholar 

  • Poitout S, Bues R (1974) Élevage de chenilles de vingt-huit espèces de Lépidoptères Noctuidae at de deux espèces d’Arctiidae sur milieu artificiel simple. Particularites de L’élevage selon les espèces. Ann Zool Ecol Anim 6:431–441

    Google Scholar 

  • Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst 11:41–65

    Article  Google Scholar 

  • Reudler Talsma JH, Tori K, van Nouhuys S (2008) Host plant use by the Heath fritillary butterfly, Melitaea athalia: plant habitat, species and chemistry. Arthropod-Plant Interactions 2:63–75

    Article  Google Scholar 

  • Richards LA, Dyer LA, Smilanich AM, Dodson CD (2010) Synergistic effects of amides from two piper species on generalist and specialist herbivores. J Chem Ecol 36:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Rimpler H (1991) Sequestration of iridoids by insects. In: Harbone JB, Thomas Barberan FA (eds) Ecological Chemistry and Biochemistry of Plant Terpenoids. Clarendon Press, Oxford

    Google Scholar 

  • Robinson GS, Ackery PR, Kitching IJ, Beccaloni GW, Hernández LM (2010) HOSTS—a Database of the World’s Lepidopteran Hostplants, vol 2010. Natural History Museum, London

  • Rothschild M (1985) British aposematic lepidoptera. In: Heath J, Emmet AM (eds) The moths and butterflies of Great Britain and Ireland. Harley Books, Essex, pp 9–62

    Google Scholar 

  • Rothschild M, Aplin RT, Cockrum PA, Edgar JA, Fairweather P, Lees R (1979) Pyrrolizidine alkaloids in arctiid moths (Lep.) with a discussion on host plant relationships and the role of the secondary plant substances in the Arctiidae. Biol J Linn Soc 12:305–326

    Article  Google Scholar 

  • Sagar GR, Harper JL (1964) Biological flora of the British isles. Plantago major L., Plantago media L. and Plantago lanceolata L. J Ecol 52:189–221

    Article  Google Scholar 

  • Sherratt TN (2002) The coevolution of warning signals. Proc R Soc Lond B 269:741–746

    Article  Google Scholar 

  • Singer MS, Lichter-Marck IH, Farkas TE, Aaron E, Whitney KD, Mooney KA (2014) Herbivore diet breadth mediates the cascading effects of carnivores in food webs. Proc Natl Acad Sci USA 111:9521–9526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singer MS, Mace KC, Bernays EA (2009) Self-medication as adaptive plasticity: increased ingestion of plant toxins by parasitized caterpillars. PLoS ONEne 4:e4796

    Article  PubMed Central  PubMed  Google Scholar 

  • Singer MS, Rodrigues D, Stireman JO, Carrière Y (2004) Roles of food quality and enemy-free space in host use by a generalist insect herbivore. Ecology 85:2747–2753

  • Smilanich AM, Dyer LA, Chambers JQ, Bowers MD (2009) Immunological cost of chemical defence and the evolution of herbivore diet breath. Ecol Lett 12:612–621

    Article  PubMed  Google Scholar 

  • Speed MP, Ruxton GD (2005) Warning displays in spiny animals: one (more) evolutionary route to aposematism. Evolution 59:2499–2508

    Article  PubMed  Google Scholar 

  • Speed MP, Ruxton GD, Mappes J, Sherratt T (2013) Why are defensive toxins so variable? An evolutionary perpective. Biol Rev 87:874–884

    Article  Google Scholar 

  • Stephenson AG (1981) Toxic nectar deters nectar thieves of Catalpa speciosa. Am Midl Nat 105:381–383

    Article  Google Scholar 

  • Stermitz FR, Kader MSA, Foderaro TA, Pomeroy M (1994) Iridoid glycosides from some butterflies and their larval food plants. Phytochemistry 37:997–999

    Article  CAS  Google Scholar 

  • Suomi J, Sirén H, Jussila M, Wiedner SK, Riekkola ML (2003) Determination of iridoid glycosides in larvae and adults of butterfly Melitaea cinxia by partial filling micellar electrokinetic capillary chromatography-electrospray ionisation mass spectrometry. Anal Bioanal Chem 376:884–889

    Article  CAS  PubMed  Google Scholar 

  • Weller SJ, Jacobsen NL, Conner WE (1999) The evolution of chemical defences and mating systems in tiger moths (Lepidoptera: Arctiidae). Biol J Linn Soc 68:557–578

    Article  Google Scholar 

  • Willinger G, Dobler S (2001) Selective sequestration of iridoid glycosides from their host plants in Longitarsus flea beetles. Biochem Syst Ecol 29:335–346

    Article  CAS  PubMed  Google Scholar 

  • Von Nickisch-Rosenegk E, Wink M (1993) Sequestration of pyrrolizdine alkaloids in several arctiid moths (Lepidoptera: Arctiidae). J Chem Ecol 19:1889–1903

    Article  Google Scholar 

  • Zhang J, Friman V-P, Laakso J, Mappes J (2012) Interactive effects between diet and genotypes of host and pathogen define the severity of infection. Ecol Evol 2:2347–2356

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Kaisa Suisto for rearing the P. plantaginis larvae used in the experiments and Emily Burdfield-Steel and an anonymous reviewer for very helpful comments on previous versions of the manuscript. Further, we thank Nåtö Biological Station for providing accommodation during the field work. This research was funded by the Centre of Excellence in Biological Interactions and Academy of Finland Grant #SA-128528 and 218372.

Author contribution statement

JHR originally formulated the idea, JHR, CL and JM developed methodology, JHR and IL conducted field and laboratory work, HP developed methods for chemical analyses, JHR performed statistical analyses, and JHR, CL and JM wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Reudler.

Additional information

Communicated by Evan H. DeLucia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reudler, J.H., Lindstedt, C., Pakkanen, H. et al. Costs and benefits of plant allelochemicals in herbivore diet in a multi enemy world. Oecologia 179, 1147–1158 (2015). https://doi.org/10.1007/s00442-015-3425-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3425-0

Keywords

Navigation