Skip to main content
Log in

The stress of growing old: sex- and season-specific effects of age on allostatic load in wild grey mouse lemurs

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Chronic stress [i.e. long-term elevation of glucocorticoid (GC) levels] and aging have similar, negative effects on the functioning of an organism. Aged individuals’ declining ability to regulate GC levels may therefore impair their ability to cope with stress, as found in humans. The coping of aged animals with long-term natural stressors is virtually unstudied, even though the ability to respond appropriately to stressors is likely integral to the reproduction and survival of wild animals. To assess the effect of age on coping with naturally fluctuating energetic demands, we measured stress hormone output via GC metabolites in faecal samples (fGCM) of wild grey mouse lemurs (Microcebus murinus) in different ecological seasons. Aged individuals were expected to exhibit elevated fGCM levels under energetically demanding conditions. In line with this prediction, we found a positive age effect in the dry season, when food and water availability are low and mating takes place, suggesting impaired coping of aged wild animals. The age effect was significantly stronger in females, the longer-lived sex. Body mass of males but not females correlated positively with fGCM in the dry season. Age or body mass did not influence fGCM significantly in the rainy season. The sex- and season-specific predictors of fGCM may reflect the differential investment of males and females into reproduction and longevity. A review of prior research indicates contradictory aging patterns in GC regulation across and even within species. The context of sampling may influence the likelihood of detecting senescent declines in GC functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alberts S, Archie E, Gesquiere L, Altmann J, Christensen K (2014) The male-female health-survival paradox: a comparative perspective on sex differences in aging and mortality. In: Weinstein M, Lane MA (eds) Sociality, hierarchy, health: comparative biodemography. National Academies Press, Washington, pp 337–361

    Google Scholar 

  • Angelier F, Shaffer SA, Weimerskirch H, Chastel O (2006) Effect of age, breeding experience and senescence on corticosterone and prolactin levels in a long-lived seabird: the wandering albatross. Gen Comp Endocrinol 149:1–9

    Article  CAS  PubMed  Google Scholar 

  • Angelier F, Moe B, Weimerskirch H, Chastel O (2007a) Age-specific reproductive success in a long-lived bird: do older parents resist stress better? J Anim Ecol 76:1181–1191

    Article  PubMed  Google Scholar 

  • Angelier F, Weimerskirch H, Dano S, Chastel O (2007b) Age, experience and reproductive performance in a long-lived bird: a hormonal perspective. Behav Ecol Sociobiol 61:611–621

    Article  Google Scholar 

  • Barton K (2014) MuMIn: multi-model inference. R package version 1.10.0. http://CRAN.R-project.org/package=MuMIn

  • Bates DM, M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-7, http://CRAN.R-project.org/package=lme4

  • Beehner JC, McCann C (2008) Seasonal and altitudinal effects on glucocorticoid metabolites in a wild primate (Theropithecus gelada). Phys Behav 95:508–514. doi:10.1016/j.physbeh.2008.07.022

    Article  CAS  Google Scholar 

  • Bokony V, Lendvai AZ, Liker A, Angelier F, Wingfield JC, Chastel O (2009) Stress response and the value of reproduction: are birds prudent parents? Am Nat 173:589–598

    Article  PubMed  Google Scholar 

  • Bonduriansky R, Maklakov A, Zajitschek F, Brooks R (2008) Sexual selection, sexual conflict and the evolution of ageing and life span. Funct Ecol 22:443–453

    Article  Google Scholar 

  • Bonier F, Martin PR, Moore IT, Wingfield JC (2009a) Do baseline glucocorticoids predict fitness? Trends Ecol Evol 24:634–642

    Article  PubMed  Google Scholar 

  • Bonier F, Moore IT, Martin PR, Robertson RJ (2009b) The relationship between fitness and baseline glucocorticoids in a passerine bird. Gen Comp Endocrinol 163:208–213

    Article  CAS  PubMed  Google Scholar 

  • Boonstra R (2005) Equipped for life: the adaptive role of the stress axis in male mammals. J Mammal 86:236–247. doi:10.1644/BHE-001.1

    Article  Google Scholar 

  • Boonstra R (2013) Reality as the leading cause of stress: rethinking the impact of chronic stress in nature. Funct Ecol 27:11–23. doi:10.1111/1365-2435.12008

    Article  Google Scholar 

  • Boonstra R, McColl CJ, Karels TJ (2001) Reproduction at all costs: the adaptive stress response of male Arctic ground squirrels. Ecology 82:1930–1946. doi:10.1890/0012-9658(2001)082[1930:RAACTA]2.0.CO;2

  • Boonstra R, Dantzer B, Delehanty B, Fletcher QE, Sheriff MJ (2014) Equipped for life in the boreal forest: the role of the stress axis in mammals. ARCTIC 67:82–97. doi:10.14430/arctic4357

    Article  Google Scholar 

  • Brett LP, Chong GS, Coyle S, Levine S (1983) The pituitary-adrenal response to novel stimulation and ether stress in young adult and aged rats. Neurobiol Aging 4:133–138

    Article  CAS  PubMed  Google Scholar 

  • Cabezas S, Blas J, Marchant TA, Moreno S (2007) Physiological stress levels predict survival probabilities in wild rabbits. Horm Behav 51:313–320. doi:10.1016/j.yhbeh.2006.11.004

    Article  CAS  PubMed  Google Scholar 

  • Clinchy M, Sheriff MJ, Zanette LY (2013) Predator-induced stress and the ecology of fear. Funct Ecol 27:56–65. doi:10.1111/1365-2435.12007

    Article  Google Scholar 

  • Crespi EJ, Williams TD, Jessop TS, Delehanty B (2013) Life history and the ecology of stress: how do glucocorticoid hormones influence life-history variation in animals? Funct Ecol 27:93–106. doi:10.1111/1365-2435.12009

    Article  Google Scholar 

  • Critchlow V, Liebelt R, Bar-Sela M, Mountcastle W, Lipscomb H (1963) Sex difference in resting pituitary-adrenal function in the rat. Am J Physiol 205:807–815

    CAS  PubMed  Google Scholar 

  • Dammhahn M, Kappeler PM (2008) Comparative Feeding Ecology of Sympatric Microcebus berthae and M. murinus. Int J Primatol 29:1567–1589. doi:10.1007/s10764-008-9312-3

    Article  Google Scholar 

  • Eberle M, Kappeler PM (2002) Mouse lemurs in space and time: a test of the socioecological model. Behav Ecol Sociobiol 51:131–139. doi:10.1007/s002650100409

    Article  Google Scholar 

  • Eberle M, Kappeler PM (2004a) Selected polyandry: female choice and inter-sexual conflict in a small nocturnal solitary primate (Microcebus murinus). Behav Ecol Sociobiol 57:91–100. doi:10.1007/s00265-004-0823-4

    Article  Google Scholar 

  • Eberle M, Kappeler PM (2004b) Sex in the dark: determinants and consequences of mixed male mating tactics in Microcebus murinus, a small solitary nocturnal primate. Behav Ecol Sociobiol 57:77–90. doi:10.1007/s00265-004-0826-1

    Article  Google Scholar 

  • Elliott KH, O’Reilly KM, Hatch SA, Gaston AJ, Hare JF, Anderson WG (2014) The prudent parent meets old age: A high stress response in very old seabirds supports the terminal restraint hypothesis. Horm Behav 66:828–837. doi:10.1016/j.yhbeh.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  • Frolkis VV (1993) Stress-age syndrome. Mech Ageing Dev 69:93–107

    Article  CAS  PubMed  Google Scholar 

  • Ganswindt A, Palme R, Heistermann M, Borragan S, Hodges JK (2003) Non-invasive assessment of adrenocortical function in the male African elephant (Loxodonta africana) and its relation to musth. Gen Comp Endocrinol 134:156–166

    Article  CAS  PubMed  Google Scholar 

  • George SC, Smith TE, Mac Cana PSS, Coleman R, Montgomery WI (2014) Physiological stress in the Eurasian badger (Meles meles): effects of host, disease and environment. Gen Comp Endocrinol 200:54–60. doi:10.1016/j.ygcen.2014.02.017

    Article  CAS  PubMed  Google Scholar 

  • Gesquiere LR et al (2008) Coping with a challenging environment: effects of seasonal variability and reproductive status on glucocorticoid concentrations of female baboons (Papio cynocephalus). Horm Behav 54:410–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gesquiere LR, Onyango PO, Alberts SC, Altmann J (2011) Endocrinology of year-round reproduction in a highly seasonal habitat: environmental variability in testosterone and glucocorticoids in baboon males. Am J Phys Anthropol 144:169–176. doi:10.1002/ajpa.21374

    Article  PubMed Central  PubMed  Google Scholar 

  • Glaser R, Kiecolt-Glaser JK (2005) Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 5:243–251

    Article  CAS  PubMed  Google Scholar 

  • Goncharova ND, Lapin BA (2002) Effects of aging on hypothalamic-pituitary-adrenal system function in non-human primates. Mech Ageing Dev 123:1191–1201

    Article  CAS  PubMed  Google Scholar 

  • Goncharova ND, Lapin BA (2004) Age-related endocrine dysfunction in nonhuman primates. Ann NY Acad Sci 1019:321–325

    Article  CAS  PubMed  Google Scholar 

  • Goodman SM, O’Connor S, Langrand O (1993) A review of predation on lemurs: implications for the evolution of social behavior in small, nocturnal primates. In: Kappeler PM, Ganzhorn JU (eds) Lemur social systems and their ecological basis. Springer, Berlin, pp 51–66

  • Goutte A, Antoine É, Weimerskirch H, Chastel O (2010) Age and the timing of breeding in a long-lived bird: a role for stress hormones? Funct Ecol 24:1007–1016. doi:10.1111/j.1365-2435.2010.01712.x

    Article  Google Scholar 

  • Graham J, Christian L, Kiecolt-Glaser J (2006) Stress, age, and immune function: toward a lifespan approach. J Behav Med 29:389–400. doi:10.1007/s10865-006-9057-4

    Article  PubMed Central  PubMed  Google Scholar 

  • Gust D, Wilson M, Stocker T, Conrad S, Plotsky P, Gordon T (2000) Activity of the hypothalamic-pituitary-adrenal axis is altered by aging and exposure to social stress in female rhesus monkeys 1. J Clin Endcrinol Metab 85:2556–2563

    CAS  Google Scholar 

  • Hämäläinen A, Dammhahn M, Aujard F, Eberle M, Hardy I, Kappeler PM, Perret M, Schliehe-Diecks S, Kraus C (2014a) Senescence or selective disappearance? Age trajectories of body mass in wild and captive populations of a small-bodied primate. Proc R Soc B Biol Sci 281:20140830. doi:10.1098/rspb.2014.0830

  • Hämäläinen A, Heistermann M, Fenosoa ZSE, Kraus C (2014) Evaluating capture stress in wild gray mouse lemurs via repeated fecal sampling: method validation and the influence of prior experience and handling protocols on stress responses. Gen Comp Endocrinol 195:68–79. doi:10.1016/j.ygcen.2013.10.017

    Article  PubMed  Google Scholar 

  • Hämäläinen A, Dammhahn M, Aujard F, Kraus C (2015) Losing grip: senescent decline in physical strength in a small-bodied primate in captivity and in the wild. Exp Gerontol 61:54–61. doi:10.1016/j.exger.2014.11.017

    Article  PubMed  Google Scholar 

  • Handa RJ, Burgess LH, Kerr JE, O’Keefe JA (1994) Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm Behav 28:464–476. doi:10.1006/hbeh.1994.1044

    Article  CAS  PubMed  Google Scholar 

  • Harris BN (2012) Reproduction in the face of stress: mediation by the hypothalamic-pituitary-adrenal (HPA) axis. PhD dissertation, UC Riverside

  • Harris BN, Saltzman W (2013) Effects of aging on hypothalamic-pituitary-adrenal (HPA) axis activity and reactivity in virgin male and female California mice (Peromyscus californicus). Gen Comp Endocrinol 186:41–49. doi:10.1016/j.ygcen.2013.02.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hau M, Ricklefs RE, Wikelski M, Lee KA, Brawn JD (2010) Corticosterone, testosterone and life-history strategies of birds. Proc Biol Sci 277:3203–3212. doi:10.1098/rspb.2010.0673

  • Heidinger BJ, Nisbet ICT, Ketterson ED (2006) Older parents are less responsive to a stressor in a long-lived seabird: a mechanism for increased reproductive performance with age? Proc R Soc B Biol Sci 273:2227–2231. doi:10.1098/rspb.2006.3557

    Article  Google Scholar 

  • Heidinger BJ, Nisbet ICT, Ketterson ED (2008) Changes in adrenal capacity contribute to a decline in the stress response with age in a long-lived seabird. Gen Comp Endocrinol 156:564–568. doi:10.1016/j.ygcen.2008.02.014

    Article  CAS  PubMed  Google Scholar 

  • Heistermann M, Ademmer C, Kaumanns W (2004) Ovarian cycle and effect of social changes on adrenal and ovarian function in Pygathrix nemaeus. Int J Primatol 25:689–708. doi:10.1023/B:IJOP.0000023581.17889.0f

    Article  Google Scholar 

  • Herman JP, Larson BR, Speert DB, Seasholtz AF (2001) Hypothalamo–pituitary–adrenocortical dysregulation in aging F344/Brown-Norway F1 hybrid rats. Neurobiol Aging 22:323–332

    Article  CAS  PubMed  Google Scholar 

  • Heuser I, Gotthardt U, Schweiger U, Schmider J, Lammers CH, Dettling M, Holsboer F (1994) Age-associated changes of pituitary-adrenocortical hormone regulation in humans: importance of gender. Neurobiol Aging 15:227–231

  • Juster R-P, McEwen BS, Lupien SJ (2010) Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosc Biobehav Rev 35:2–16

    Article  Google Scholar 

  • Kasckow JW et al (2005) Stability of neuroendocrine and behavioral responsiveness in aging Fischer 344/Brown-Norway hybrid rats. Endocrinology 146:3105–3112

    Article  CAS  PubMed  Google Scholar 

  • Kitay JI (1961) Sex differences in adrenal cortical secretion in the rat. Endocrinology 68:818–824

    Article  CAS  PubMed  Google Scholar 

  • Kitaysky AS, Wingfield JC, Piatt JF (1999) Dynamics of food availability, body condition and physiological stress response in breeding Black-legged Kittiwakes. Funct Ecol 13:577–584. doi:10.1046/j.1365-2435.1999.00352.x

    Article  Google Scholar 

  • Koolhaas J et al (2011) Stress revisited: a critical evaluation of the stress concept. Neurosc Biobehav Rev 35:1291–1301

    Article  CAS  Google Scholar 

  • Kraus C, Eberle M, Kappeler PM (2008) The costs of risky male behaviour: sex differences in seasonal survival in a small sexually monomorphic primate. Proc R Soc B Biol Sci 275:1635–1644. doi:10.1098/rspb.2008.0200

    Article  Google Scholar 

  • Kudielka BM, Kirschbaum C (2005) Sex differences in HPA axis responses to stress: a review. Biol Psychol 69:113–132

    Article  PubMed  Google Scholar 

  • Kudielka BM, Hellhammer DH, Wüst S (2009) Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology 34:2–18. doi:10.1016/j.psyneuen.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2014) lmerTest: tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package), 2.0-6 edn.http://www.cran.r-project.org/web/packages/lmerTest/lmerTest.pdf

  • Landys MM, Ramenofsky M, Wingfield JC (2006) Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen Comp Endocrinol 148:132–149

    Article  CAS  PubMed  Google Scholar 

  • Languille S et al (2012) The grey mouse lemur: a non-human primate model for ageing studies. Ageing Res Rev 11:150–162

    Article  CAS  PubMed  Google Scholar 

  • Lecomte VJ et al (2010) Patterns of aging in the long-lived wandering albatross. Proc Natl Acad Sci USA 107:6370–6375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Massot M, Clobert J, Montes-Poloni L, Haussy C, Cubo J, Meylan S (2011) An integrative study of ageing in a wild population of common lizards. Funct Ecol 25:848–858. doi:10.1111/j.1365-2435.2011.01837.x

    Article  Google Scholar 

  • McEwen BS (1998) Protective and damaging effects of stress mediators. New Engl J Med 338:171–179. doi:10.1056/NEJM199801153380307

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS (2008) Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583:174–185. doi:10.1016/j.ejphar.2007.11.071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15

    Article  PubMed  Google Scholar 

  • Mizoguchi K, Ikeda R, Shoji H, Tanaka Y, Maruyama W, Tabira T (2009) Aging attenuates glucocorticoid negative feedback in rat brain. Neuroscience 159:259–270

    Article  CAS  PubMed  Google Scholar 

  • Montiglio PO, Garant D, Pelletier F, Réale D (2014) Intra-individual variability in fecal cortisol metabolites varies with lifetime exploration and reproductive life history in eastern chipmunks (Tamias striatus). Behav Ecol Sociobiol 69:1–11. doi:10.1007/s00265-014-1812-x

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  • Némoz-Bertholet F, Aujard F (2003) Physical activity and balance performance as a function of age in a prosimian primate (Microcebus murinus). Exp Gerontol 38:407–414

    Article  PubMed  Google Scholar 

  • Nicolson N, Storms C, Ponds R, Sulon J (1997) Salivary cortisol levels and stress reactivity in human aging. J Gerontol A Biol Sci Med Sci 52:M68–M75

    Article  CAS  PubMed  Google Scholar 

  • Nussey DH, Coulson T, Festa-Bianchet M, Gaillard JM (2008) Measuring senescence in wild animal populations: towards a longitudinal approach. Funct Ecol 22:393–406. doi:10.1111/j.1365-2435.2008.01408.x

    Article  Google Scholar 

  • Nussey DH et al (2011) Patterns of body mass senescence and selective disappearance differ among three species of free-living ungulates. Ecology 92:1936–1947. doi:10.1890/11-0308.1

    Article  PubMed  Google Scholar 

  • Otte C, Hart S, Neylan TC, Marmar CR, Yaffe K, Mohr DC (2005) A meta-analysis of cortisol response to challenge in human aging: importance of gender. Psychoneuroendocrinology 30:80–91. doi:10.1016/j.psyneuen.2004.06.002

    Article  CAS  PubMed  Google Scholar 

  • Patterson SH, Hahn TP, Cornelius JM, Breuner CW (2014) Natural selection and glucocorticoid physiology. J Evol Biol 27:259–274. doi:10.1111/jeb.12286

    Article  CAS  PubMed  Google Scholar 

  • Perret M, Aujard F (2001) Regulation by photoperiod of seasonal changes in body mass and reproductive function in gray mouse lemurs (Microcebus murinus): differential responses by sex. Int J Primatol 22:5–24

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed effects models in S and S-PLUS. Springer, Berlin

  • Pride RE (2005) High faecal glucocorticoid levels predict mortality in ring-tailed lemurs (Lemur catta). Biol Lett 1:60–63

    Article  CAS  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL: http://www.r-project.org

  • Reul JMHM, Rothuizen J, de Kloet ER (1991) Age-related changes in the dog hypothalamic-pituitary-adrenocortical system: neuroendocrine activity and corticosteroid receptors. J Steroid Biochem Mol Biol 40:63–69. doi:10.1016/0960-0760(91)90168-5

    Article  CAS  PubMed  Google Scholar 

  • Ricklefs RE, Wikelski M (2002) The physiology/life-history nexus. Trends Ecol Evol 17:462–468

    Article  Google Scholar 

  • Romero LM (2002) Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen Comp Endocrinol 128:1–24

    Article  CAS  PubMed  Google Scholar 

  • Rothuizen J, Reul J, Van Sluijs F, Mol J, Rijnberk A, de Kloet Ed (1993) Increased neuroendocrine reactivity and decreased brain mineralocorticoid receptor-binding capacity in aged dogs. Endocrinology 132:161–168

  • Sapolsky RM (1992) Do glucocorticoid concentrations rise with age in the rat? Neurobiol aging 13:171–174. doi:10.1016/0197-4580(92)90025-S

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM, Altmann J (1991) Incidence of hypercortisolism and dexamethasone resistance increases with age among wild baboons. Biol Psychiatry 30:1008–1016

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM, Krey LC, McEwen BS (1983) The adrenocorticol stress-response in the aged male rat: Impairment of recovery from stress. Exp Gerontol 18:55–64. doi:10.1016/0531-5565(83)90051-7

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM, Krey LC, McEwen BS (1984) Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proc Natl Acad Sci USA 81:6174–6177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sapolsky RM, Krey LC, McEwen BS (1986) The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev 7:284–301. doi:10.1210/edrv-7-3-284

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky R, Armanini M, Packan D, Tombaugh G (1987) Stress and glucocorticoids in aging. Endocrinol Metab Clin North Am 16:965–980

    CAS  PubMed  Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89. doi:10.1210/er.21.1.55

    CAS  PubMed  Google Scholar 

  • Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113

    Article  Google Scholar 

  • Schmid J (1999) Sex-specific differences in activity patterns and fattening in the gray mouse lemur (Microcebus murinus) in Madagascar. J Mammal 80:749–757

    Article  Google Scholar 

  • Schmid J, Kappeler PM (1998) Fluctuating sexual dimorphism and differential hibernation by sex in a primate, the gray mouse lemur (Microcebus murinus). Behav Ecol Sociobiol 43:125–132

    Article  Google Scholar 

  • Sheriff MJ, Krebs CJ, Boonstra R (2009) The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares. J Anim Ecol 78:1249–1258

    Article  PubMed  Google Scholar 

  • Sheriff M, Dantzer B, Delehanty B, Palme R, Boonstra R (2011) Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia 166:869–887. doi:10.1007/s00442-011-1943-y

    Article  PubMed  Google Scholar 

  • Shoji H, Mizoguchi K (2010) Acute and repeated stress differentially regulates behavioral, endocrine, neural parameters relevant to emotional and stress response in young and aged rats. Behav Brain Res 211:169–177. doi:10.1016/j.bbr.2010.03.025

    Article  CAS  PubMed  Google Scholar 

  • Touma C et al (2004) Age-and sex-dependent development of adrenocortical hyperactivity in a transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 25:893–904

    Article  CAS  PubMed  Google Scholar 

  • Van Kampen M, Fuchs E (1998) Age-related levels of urinary free cortisol in the tree shrew. Neurobiol Aging 19:363–366

    Article  PubMed  Google Scholar 

  • Veldhuis JD, Sharma A, Roelfsema F (2013) Age-dependent and gender-dependent regulation of hypothalamic–adrenocorticotropic–adrenal axis. Endocrinol Metab Clin North Am 42:201–225. doi:10.1016/j.ecl.2013.02.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilcoxen T, Boughton R, Schoech S (2010) Older can be better: physiological costs of paternal investment in the Florida scrub-jay. Behav Ecol Sociobiol 64:1527–1535. doi:10.1007/s00265-010-0966-4

    Article  Google Scholar 

  • Wilcoxen TE, Boughton RK, Bridge ES, Rensel MA, Schoech SJ (2011) Age-related differences in baseline and stress-induced corticosterone in Florida scrub-jays. Gen Comp Endocrinol 173:461–466

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson CW, Peskind ER, Raskind MA (1997) Decreased hypothalamic–pituitary adrenal axis sensitivity to cortisol feedback inhibition in human aging. Neuroendocrinology 65:79–90

    Article  CAS  PubMed  Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411

    Article  Google Scholar 

  • Wingfield J, Sapolsky R (2003) Reproduction and resistance to stress: when and how. J Neuroendocrinol 15:711–724

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Bruno Tsiverimana, Léonard Razafimanantsoa and the rest of the Kirindy research station staff, as well as Melanie Dammhahn, Eva Pechouskova, Josue Rakotoniaina and Zo Samuel Ella Fenosoa for their help in collecting data, Andrea Heistermann for conducting the hormone analyses, Peter Kappeler and Rodin Rasoloarison for their administrative and logistic support and Hanta Razafindraibe and the Département de Biologie Animale of the University of Antananarivo for their continued collaboration. Constructive comments by Pawel Koteja and two anonymous reviewers helped improve an earlier version of the manuscript. Ministère de l’Environment et des Eaux et Fôrets, MINEEF Direction des Eaux et Forêts of Madagascar and CNFEREF Morondava permitted research in Kirindy and all research was approved by the appropriate Animal Use and Care committees of Germany (Bundesministerium für Naturschutz, BfN) and complies with the applicable national laws of Madagascar. Funding was provided by the Deutsche Forschungsgemeinschaft (awarded to C.K., KR3834/1-1).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anni Hämäläinen.

Additional information

Communicated by Pawel Koteja.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hämäläinen, A., Heistermann, M. & Kraus, C. The stress of growing old: sex- and season-specific effects of age on allostatic load in wild grey mouse lemurs. Oecologia 178, 1063–1075 (2015). https://doi.org/10.1007/s00442-015-3297-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3297-3

Keywords

Navigation