Skip to main content
Log in

Natural abundance (δ15N) indicates shifts in nitrogen relations of woody taxa along a savanna–woodland continental rainfall gradient

  • Ecosystem ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Water and nitrogen (N) interact to influence soil N cycling and plant N acquisition. We studied indices of soil N availability and acquisition by woody plant taxa with distinct nutritional specialisations along a north Australian rainfall gradient from monsoonal savanna (1,600–1,300 mm annual rainfall) to semi-arid woodland (600–250 mm). Aridity resulted in increased ‘openness’ of N cycling, indicated by increasing δ15Nsoil and nitrate:ammonium ratios, as plant communities transitioned from N to water limitation. In this context, we tested the hypothesis that δ15Nroot xylem sap provides a more direct measure of plant N acquisition than δ15Nfoliage. We found highly variable offsets between δ15Nfoliage and δ15Nroot xylem sap, both between taxa at a single site (1.3–3.4 ‰) and within taxa across sites (0.8–3.4 ‰). As a result, δ15Nfoliage overlapped between N-fixing Acacia and non-fixing Eucalyptus/Corymbia and could not be used to reliably identify biological N fixation (BNF). However, Acacia δ15Nroot xylem sap indicated a decline in BNF with aridity corroborated by absence of root nodules and increasing xylem sap nitrate concentrations and consistent with shifting resource limitation. Acacia dominance at arid sites may be attributed to flexibility in N acquisition rather than BNF capacity. δ15Nroot xylem sap showed no evidence of shifting N acquisition in non-mycorrhizal Hakea/Grevillea and indicated only minor shifts in Eucalyptus/Corymbia consistent with enrichment of δ15Nsoil and/or decreasing mycorrhizal colonisation with aridity. We propose that δ15Nroot xylem sap is a more direct indicator of N source than δ15Nfoliage, with calibration required before it could be applied to quantify BNF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem Cycles 17:1031

    Article  CAS  Google Scholar 

  • Andrews M (1986) The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell Environ 9:511–520

    CAS  Google Scholar 

  • Aranibar J, Otter L, Macko SA, Feral CJ, Epstein HE, Dowty PR, Eckardt F, Shugart HH, Swap RJ (2004) Nitrogen cycling in the soil–plant system along a precipitation gradient in the Kalahari sands. Glob Change Biol 10:359–373

    Article  Google Scholar 

  • Austin AT, Sala OE (1999) Foliar delta δ15N is negatively correlated with rainfall along the IGBP transect in Australia. Aust J Plant Physiol 26:293–295

    Article  Google Scholar 

  • Austin A, Vitousek PM (1998) Nutrient dynamics on a precipitation gradient in Hawai’i. Oecologia 113:519–529

    Article  Google Scholar 

  • Austin A, Yahdijan L, Stark JM, Belnap J, Proporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:231–235

    Article  Google Scholar 

  • Australian Government Bureau of Meterology (2012) Climate database. http://www.bom.gov.au/climate/data/

  • Bai E, Houlton B (2009) Coupled isotopic and process-based modeling of gaseous nitrogen losses from tropical rain forests. Glob Biogeochem Cycles 23:GB2011

    Article  CAS  Google Scholar 

  • Barron A, Purves DW, Hedin LO (2011) Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecolgia 165:511–520

    Article  Google Scholar 

  • Bergersen F, Peoples M, Turner G (1988) Isotopic discriminations during the accumulation of nitrogen by soybeans. Funct Plant Biol 15:407–420

    CAS  Google Scholar 

  • Beringer J, Hacker J, Hutley LB, Leuning R, Arndt SK, Amiri R, Bannehr L, Cernusak LA, Grover S, Hensley C, Hocking D, Isaac P, Jamali H, Kanniah K, Livesley S, Neininger B, Paw KT, Sea W, Straten D, Tapper N, Weinmann R, Wood S, Zegelin S (2011) SPECIAL: savanna patterns of energy and carbon integrated across the landscape. Bull Am Meteorol Soc 92:1467–1485

    Article  Google Scholar 

  • Boddey R, Peoples M, Palmer B, Dart P, Bowman D (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycl Agroecosys 57:235–270

    Article  Google Scholar 

  • Bowman D, Connors G (1996) Does low temperature cause the dominance of Acacia on the central Australian mountains? Evidence from a latitudinal gradient from 11° to 26° South in the Northern Territory, Australia. J Biogeogr 23:245–256

    Article  Google Scholar 

  • Cleveland C, Houlton B, Neill C, Reed S, Townsend A, Wang Y (2010) Using indirect methods to constrain symbiotic nitrogen fixation rates: a case study from an Amazonian rain forest. Biogeochemistry 99:1–13

    Article  Google Scholar 

  • Comstock J (2001) Steady-state isotopic fractionation in branched pathways using plant uptake of NO3 as an example. Planta 214:220–234

    Article  CAS  PubMed  Google Scholar 

  • Cook G (1994) The fate of nutrients during fires in a tropical savanna. Aust J Ecol 19:359–365

    Article  Google Scholar 

  • Cook G (2001) Effects of frequent fires and grazing on stable nitrogen isotope ratios of vegetation in northern Australia. Austral Ecol 26:630–636

    Article  Google Scholar 

  • Cook G, Williams R, Hutley L, O’Grady A (2002) Variation in vegetative water use in the savannas of the North Australian Tropical Transect. J Veg Sci 13:413–418

    Article  Google Scholar 

  • Craine J, Elmore A, Bustamante M, Aidar MPM, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelson A, Nardoto GB, Pardo LH, Penuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992

    Article  CAS  PubMed  Google Scholar 

  • Dinkelaker B, Hengeler C, Marschner H (1995) Distribution and function of proteoid roots and other root clusters. Bot Acta 108:183–200

    Article  Google Scholar 

  • Eamus D, Prior L (2001) Ecophysiology of trees of seasonally dry tropics: comparisons among phenologies. Adv Ecol Res 32:113–197

    Article  CAS  Google Scholar 

  • Eckhard G, Marschner H, Jakobson I (1995) Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit Rev Biotechnol 15:257–270

    Article  Google Scholar 

  • Elliott EM, Kendall C, Wankel SD (2007) Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the midwestern and northeastern United States. Environ Sci Tech 41:7661–7667

    Article  CAS  Google Scholar 

  • Erskine P, Stewart G, Schmidt S, Turnbull M, Unkovich M, Pate J (1996) Water availability: a physiological constraint on nitrate utilization in plants of Australian semi-arid mulga woodlands. Plant Cell Environ 19:1149–1159

    Article  CAS  Google Scholar 

  • Evans R (2001a) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6:1360–1385

    Article  Google Scholar 

  • Evans R (2001b) Soil nitrogen isotope composition. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, Malden, pp 83–98

    Google Scholar 

  • Evans RD (2007) Soil nitrogen isotopic composition. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Wiley, New York, pp 93–98

    Google Scholar 

  • Evans R, Ehleringer J (1993) A break in the nitrogen cycle in aridlands? Evidence from δ15N of soils. Oecologia 94:314–317

    Article  Google Scholar 

  • Feral C, Epstein HE, Otter L, Aranibar JN, Shugart HH, Macko SA, Ramontsho J (2003) Carbon and nitrogen in the soil-plant system along rainfall and land-use gradients in southern Africa. J Arid Environ 54:327–343

    Article  Google Scholar 

  • Ferrol N, Pérez-Tienda J (2009) Coordinated Nutrient Exchange in Arbuscular Mycorrhiza. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas: functional processes and ecological impact. Springer, Heidelberg, pp 73–88

    Chapter  Google Scholar 

  • Fox J (1997) Applied regression analysis, linear models and related methods. Sage Publications, Thousand Oaks

    Google Scholar 

  • Fox J, Bates D, Firth D, Friendly M, Gorjanc G, Graves S, Heiberger R, Monette G, Nilsson H, Ogle D, Ripley B, Weisberg S, Zeleis A (2009) Car: companion to applied regression. R package version 1.2-16

  • Freyer HD, Kobel K, Delmas RJ, Kley D, Legrand MR (1996) First results of 15N/14N ratios in nitrate from alpine and polar ice cores. Tellus B 48:93–105

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Kar, DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Galloway J, Townsend A, Erisman J, Bekunda M, Cai Z, Freney J, Martinelli L, Seitzinger S, Sutton M (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Gauthier PPG, Lamothe M, Mahe A, Molero G, Nogues S, Hodges M, Tcherkez G (2012) Metabolic origin of δ15N values in nitrogenous compounds from Brassica napus L. leaves. Plant Cell Environ 36:128–137

    Article  PubMed  CAS  Google Scholar 

  • Gebauer G, Schulze ED (1991) Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria. Oecologia 87:198–207

    Article  Google Scholar 

  • Grime J (2002) Plant strategies, vegetation processes, and ecosystem properties. Wiley, Chischester

    Google Scholar 

  • Guinto D, Xu Z, House A, Saffigna P (2000) Assessment of N2 fixation by understorey acacias in recurrently burnt eucalypt forests of subtropical Australia using 15N isotope dilution techniques. Can J For Res 30:112–121

    Article  CAS  Google Scholar 

  • Handley LL, Raven JA (1992) The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ 15:965–985

    Article  CAS  Google Scholar 

  • Handley L, Austin A, Robinson D, Scrimgeour S, Raven J, Heaton T, Schmidt S, Stewart G (1999) The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Aust J Plant Physiol 26:185–199

    Article  Google Scholar 

  • Handley L, Johnson AM, Hallett PD, Scrimgeour CM, Wheatley RE (2001) Development of δ15N stratification of NO3 in soil profiles. Rapid Commun Mass Spectrom 15:1274–1278

    Article  CAS  PubMed  Google Scholar 

  • Hansen A, Pate J (1987) Comparative growth and symbiotic performance of seedlings of Acacia spp. in defined pot culture or as natural understorey components of a Eucalypt forest ecosystem in S.W. Australia. J Exp Bot 38:13–25

    Article  CAS  Google Scholar 

  • Hartley A, Barger N, Belnap J, Okin G (2007) Dryland Ecosystems. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems, vol 10. Springer, Berlin, pp 271–307

    Chapter  Google Scholar 

  • Hartwig U (1998) The regulation of symbiotic N2 fixation: a conceptual model of N feedback from the ecosystem to the gene expression level. Perspect Plant Ecol 1:92–120

    Article  Google Scholar 

  • Hawkes C, Kivlin S, Rocca J, Huguet V, Thomsen M, Suttle K (2011) Fungal community responses to precipitation. Glob Change Biol 17:1637–1645

    Article  Google Scholar 

  • Hayashi H, Okada Y, Mano H, Kume T, Matsuhashi S, S-Ishioka N, Uchida H, Chino M (1997) Detection and characterization of nitrogen circulation through the sieve tubes and xylem vessels of rice plants. Plant Soil 196:233–237

    Article  CAS  Google Scholar 

  • Hedin L, Brookshire E, Menge D, Barron A (2009) The nitrogen paradox in tropical forest ecosystems. Annu Rev Ecol Syst 40:613–635

    Article  Google Scholar 

  • Hobbie S (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–339

    Article  CAS  PubMed  Google Scholar 

  • Hobbie EA, Högberg P (2012) Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol 196:367–382

    Article  CAS  PubMed  Google Scholar 

  • Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203

    Article  Google Scholar 

  • Houlton BZ, Sigman DM, Hedin LO (2006) Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proc Natl Acad Sci USA 103:8745–8750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hughes L (2003) Climate change and Australia: trends, projections and impacts. Austral Ecol 28:423–443

    Article  Google Scholar 

  • Hutchinson G, Guenzi W, Livingston G (1993) Soil water controls on aerobic soil emission of gaseous nitrogen oxides. Soil Biol Biochem 25:1–9

    Article  CAS  Google Scholar 

  • Hutley L, Beringer J, Isaac P, Hacker J, Cernusak L (2011) A sub-continental scale living laboratory: spatial patterns of savanna vegetation over a rainfall gradient in northern Australia. Agric For Meteorol 151:1417–1428

    Article  Google Scholar 

  • Kanniah KD, Beringer J, Hutley LB (2011) Environmental controls on the spatial variability of savanna productivity in the Northern Territory, Australia. Agric For Meteorol 151:1429–1439

    Article  Google Scholar 

  • Knops J, Bradley K, Wedin D (2002) Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol Lett 5:454–466

    Article  Google Scholar 

  • Kolb K, Evans R (2002) Implications of leaf nitrogen recycling on the nitrogen isotope composition of deciduous plant tissues. New Phytol 156:57–64

    Article  Google Scholar 

  • Lajtha K, Whitford W (1989) The effect of water and nitrogen amendments on photosynthesis, leaf demography, and resource-use efficiency in Larrea tridentata, a desert evergreen shrub. Oecologia 80:341–348

    Article  Google Scholar 

  • Langkamp P, Swinden L, Dalling M (1979) Nitrogen fixation (acetylene reduction) by Acacia pellita on areas restored after mining at Groote Eylandt, Northern Territory. Aust J Bot 27:353–361

    CAS  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Lawrie A (1981) Nitrogen fixation by native Australian Legumes. Aust J Bot 29:143–157

    Article  CAS  Google Scholar 

  • Liu X-Y, Koba K, Takebayashi Y, Liu C-Q, Fang Y-T, Yoh M (2013) Dual N and O isotopes of nitrate in natural plants: first insights into individual variability and organ-specific patterns. Biogeochemistry 114:399–411

    Article  CAS  Google Scholar 

  • McCulley R, Burke I, Lauenroth W (2009) Conservation of nitrogen increases with precipitation across a major grassland gradient in the Central Great Plains of North America. Oecologia 159:571–581

    Article  PubMed  Google Scholar 

  • McKenzie N, Jacquier D, Isbell R, Brown K (2004) Australian soils and landscapes: an illustrated compendium. CSIRO, Melbourne

    Google Scholar 

  • Minchin F, Sheehy J, Witty J (1986) Further errors in the acetylene reduction assay: effect of plant disturbance. J Exp Bot 37:1581–1591

    Article  CAS  Google Scholar 

  • Miranda K, Espey M, Wink D (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide-Biol Chem 5:62–71

    Article  CAS  Google Scholar 

  • Nadelhoffer KJ, Fry B (1994) Nitrogen isotope studies in forested ecosystems. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell, Oxford, pp 22–44

    Google Scholar 

  • Newman E, Reddell P (1987) The distribution of mycorrhizas amoung families of vascular plants. New Phytol 106:745–751

    Article  Google Scholar 

  • Nye P, Tinker P (1977) Solute movement in the soil–root-system. University of California Press, Berkeley

    Google Scholar 

  • Pastor J, Post W (1986) Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry 2:3–27

    Article  Google Scholar 

  • Pate JS, Stewart GR, Unkovich M (1993) 15N natural abundance of plant and soil components of a Banksia woodland ecosystem in relation to nitrate utilization, life form, mycorrhizal status and N2-fixing abilities of component species. Plant Cell Environ 16:365–373

    Article  CAS  Google Scholar 

  • Pate J, Woodall G, Jeschke W, Stewart G (1994) Root xylem transport of amino acids in the root hemiparasitic shrub Olax phyllanthi (Labill) R. Br. (Olacaceaea) and its multiple hosts. Plant Cell Environ 17:1263–1273

    Article  CAS  Google Scholar 

  • Pate J, Unkovich M, Erskine P, Stewart G (1998) Australian mulga ecosystems—13C and 15N natural abundances of biota components and their ecophysiological significance. Plant Cell Environ 21:1231–1242

    Article  CAS  Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne T, Rentsch D, Robinson N, Christie M, Webb R, Gamage H, Carroll B, Schenk P, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci USA 105:4524–4529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • R Development Core Team (2009) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162

    Article  PubMed  Google Scholar 

  • Robinson D, Handley L, Scrimgeour C (1998) A theory for 15N/14N fractionation in nitrate-grown vascular plants. Planta 205:397–406

    Article  CAS  Google Scholar 

  • Rossiter-Rachor N, Setterfield S, Douglas M, Hutley L, Cook G (2008) Andropogon gayanus (Gamba Grass) invasion increases fire-mediated nitrogen losses in the tropical savannas of northern Australia. Ecosystems 11:77–88

    Article  CAS  Google Scholar 

  • Schmidt S (1996) Nitrogen relations in tropical and subtropical Australian plant communities. PhD thesis, University of Queensland, Brisbane

  • Schmidt S, Stewart G (1998) Transport, storage and mobilization of nitrogen by trees and shrubs in the wet/dry tropics of northern Australia. Tree Physiol 18:403–410

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Stewart G (2003) δ15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status. Oecologia 134:569–577

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Lamble R, Fensham R, Siddique I (2010) Effect of woody vegetation clearing on nutrient and carbon relations of semi-arid dystrophic savanna. Plant Soil 331:79–90

    Article  CAS  Google Scholar 

  • Scholes RJ, Archer SR (1997) Tree–grass interactions in savannas. Annu Rev Ecol Syst 28:517–544

    Article  Google Scholar 

  • Schulze ED, Gebauer G, Ziegler H, Lange OL (1991) Estimates of nitrogen fixation by trees on an aridity gradient in Namibia. Oecologia 88:451–455

    Article  Google Scholar 

  • Schulze E, Williams R, Farquhar G, Shulze W, Langridge J, Miller J, Walker B (1998) Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Aust J Plant Physiol 25:413–425

    Article  Google Scholar 

  • Serraj R, Sinclair TR, Purcell LC (1999) Symbiotic N2 fixation in response to drought. J Exp Bot 50:143–155

    CAS  Google Scholar 

  • Shearer G, Kohl D (1986) N2-fixation in field settings: estimations based on natural 15N abundance. Aust J Plant Physiol 13:669–756

    Article  Google Scholar 

  • Skiba U, Smith K (2000) The control of nitrous oxide emissions from agricultural and natural soils. Chemosphere-Glob Change Sci 2:379–386

    Article  CAS  Google Scholar 

  • Smirnoff N, Stewart G (1985) Nitrate assimilation and translocation by higher plants: comparative physiology and ecological consequences. Physiol Plant 64:133–140

    Article  CAS  Google Scholar 

  • Soper FM, Boutton TW, Sparks JP (2014) Investigating patterns of symbiotic nitrogen fixation during vegetation change from grassland to woodland using fine scale δ15N measurements. Plant Cell Environ. doi:10.1111/pce.12373

    PubMed  Google Scholar 

  • Sprent J (1994) Nitrogen aquisition systems in the Leguminosae. In: Sprent J, McKey D (eds) Advances in legume systematics, part 5: the nitrogen factor. Royal Botanic Gardens, Kew, pp 1–23

    Google Scholar 

  • Sprent J (1995) Legume trees and shrubs in the tropics: N2 fixation in perspective. Soil Biol Biochem 27:401–407

    Article  CAS  Google Scholar 

  • Sprent J (2005) Biological nitrogen fixation associated with angiosperms in terrestrial ecosystems. In: Bassiri Rad H (ed) Nutrient acquisition by plants, vol 181. Springer, Berlin, pp 89–116

    Chapter  Google Scholar 

  • Spriggs AC, Stock WD, Dakora FD (2003) Influence of mycorrhizal associations on foliar δ15N values of legume and non-legume shrubs and trees in the fynbos of South Africa: implications for estimating N2 fixation using the 15N natural abundance method. Plant Soil 255:495–502

    Article  CAS  Google Scholar 

  • Swap R, Aranibar J, Dowty P III, Gilhooly W III, Macko S (2004) Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: patterns and implications. Glob Change Biol 10:350–358

    Article  Google Scholar 

  • Tcherkez G (2011) Natural 15N/14N isotope composition in C3 leaves: are enzymatic isotope effects informative for predicting the 15N-abundance in key metabolites? Funct Plant Biol 38:1–12

    Article  CAS  Google Scholar 

  • Tcherkez G, Hodges M (2008) How stable isotopes may help to elucidate primary nitrogen metabolism and its interaction with (photo)respiration in C3 leaves. J Exp Bot 59:1685–1693

    Article  CAS  PubMed  Google Scholar 

  • Venables W, Ripley B (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Vitousek P, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rasetter EB, Sprent J (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57(58):1–45

    Article  Google Scholar 

  • Werner RA, Schmidt HL (2002) The in vivo nitrogen isotope discrimination among organic plant compounds. Phytochemistry 61:465–484

    Article  CAS  PubMed  Google Scholar 

  • Westburn M (1971) Phenol-Hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974

    Google Scholar 

  • Whitehead P, Woinarski J, Jacklyn P, Fell D, Williams D (2000) Defining and measuring the health of savanna landscapes: a north Australian perspective Tropical Savannas. CRC Discussion Paper, Cooperative Research Centre for the Sustainable Development of Tropical Savannas, pp 1–23

  • Williams R, Duff G, Bowman D, Cook G (1996) Variation in the composition and structure of tropical savannas as a function of rainfall and soil texture along a large-scale climatic gradient in the Northern Territory, Australia. J Biogeogr 23:747–756

    Article  Google Scholar 

  • Yang H, Yuan Y, Zhang Q, Tang J, Liu Y, Chen X (2011) Changes in soil organic carbon, total nitrogen, and abundance of arbuscular mycorrhizal fungi along a large-scale aridity gradient. Catena 87:70–77

    Article  CAS  Google Scholar 

  • Yoneyama T (1995) Nitrogen metabolism and fractionation of nitrogen isotopes in plants. In: Wada E, Yoneyama T, Minagawa M, Ando T, Fry BD (eds) Stable isotopes in the biosphere. Kyoto University Press, Kyoto, pp 92–102

    Google Scholar 

  • Yoneyama T, Fujiwara H, Engelaar W (2000) Weather and nodule mediated variations in δ13C and δ15N values in field-grown soybean (Glycine max L.) with special interest in the analyses of xylem fluids. J Exp Bot 51:559–566

    Article  CAS  PubMed  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under sever conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Gordon Moss and Dr Andrew Fletcher for assistance with field sampling and sample analysis. This study was conducted with the support of an Australian Research Council Discovery grant to S.S. S.S. originally formulated the idea, S.S., N.R., G.D.C., L.H. and A.E.R. developed methodology, S.S., A.E.R., and M.P.M.A. conducted fieldwork, I.S. and F.M.S. performed statistical analyses, F.M.S. and S.S. interpreted data and wrote the manuscript, other authors provided editorial advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona M. Soper.

Additional information

Communicated by Todd E. Dawson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soper, F.M., Richards, A.E., Siddique, I. et al. Natural abundance (δ15N) indicates shifts in nitrogen relations of woody taxa along a savanna–woodland continental rainfall gradient. Oecologia 178, 297–308 (2015). https://doi.org/10.1007/s00442-014-3176-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3176-3

Keywords

Navigation