Skip to main content
Log in

Post-burning regeneration of the Chaco seasonally dry forest: germination response of dominant species to experimental heat shock

  • Population ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Plant species of the Chaco seasonally dry forest of central Argentina have presumably been under a low evolutionary pressure to develop specialized fire-response traits, such as heat-stimulated germination. Nevertheless, other historical factors such as seasonal drought and/or endozoochorus dispersal could have led some species to develop heat-tolerant seeds. Therefore, heat-tolerant germination should be more common than heat-stimulated or heat-sensitive germination. To test this, we exposed seeds of 26 dominant species from the Chaco region to a broad range of experimental heat treatments and incubated them for 30 days at 25 °C and 12 h photoperiod. We then scored the percent germination and classified them as heat-stimulated, heat-tolerant or heat-sensitive based on their germination following heat treatments relative to control. Seventeen species showed heat-tolerant germination, including all native graminoids. Seven species showed heat-stimulated germination, under the less-intense heat treatments. Only two species showed heat-sensitive germination. Endozoochory had no influence on germination responses. We suggest that, unlike Mediterranean-climate ecosystems, fire was not a major evolutionary force in the development of Chaco forests, and our results provide greater understanding of the potential response of Chaco plant communities in the face of increasingly frequent fires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adler PB, Hille Ris Lambers J (2008) The influence of climate and species composition on the population dynamics of ten prairie forbs. Ecology 89:3049–3060

  • Akaike (1972) Use of an information theoretic quantity for statistical model identification. Proc 5th Hawaii Int Conf Syst Sci. North Hollywood, USA, pp 249–250

    Google Scholar 

  • Arft AM, Walker MD, Gurevitch J et al (1999) Response patterns of tundra plant species to experimental warming: a meta-analysis of the international tundra experiment. Ecol Monogr 69:491–511

  • Auld TD, Bradstock RA (1996) Soil temperatures after the passage of a fire: do they influence the germination of buried seeds? Aust J Ecol 21:106–109

    Article  Google Scholar 

  • Baeten L, De Frenne P, Verheyen K, Graae BJ, Hermy M (2010) Forest herbs in the face of global change: a single-species-multiple-threats approach for Anemone nemorosa. Plant Ecol Evol 143:19–30

  • Barchuk AH, Díaz MP, Casanoves F, Balzarin MG, Karlin UO (1998) Experimental study on survival rates in two arboreal species from the argentinean dry Chaco. For Ecol Manag 103:203–210

  • Barton LV (1965) Dormancy in seeds imposed by the seed coat. In: Rhuland W (ed) Encyclopedia of plant physiology, vol 15/2. Springer, Berlin, pp 727–745

  • Baskin CC, Baskin JM (1998a) Seeds. Ecology, biogeography and evolution of dormancy and germination. Academic, San Diego

  • Baskin CC, Baskin JM (1998b) Ecology of seed dormancy and germination in grasses. In: Cheplick GP (ed) Population biology of grasses. Cambridge University Press, Cambridge

    Google Scholar 

  • Baskin JM, Baskin CC, Li X (2000) Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Spec Biol 15:139–152

    Article  Google Scholar 

  • Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16

    Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-6. http://CRAN.R-project.org/package=lme4

  • Bellingham PJ, Tanner EVJ, Healey JR (1994) Sprouting of trees in Jamaican Montane forests, after a hurricane. J Ecol 82:747–758

    Article  Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum, New York

    Book  Google Scholar 

  • Bond WJ, van Wilgen BW (1996) Fire and plants. Chapman and Hall, London

    Book  Google Scholar 

  • Bóo RM, Peláez DV, Bunting SC, Elía OR, Mayor MD (1996) Effect of fire on grasses in central semi-arid Argentina. J Arid Environ 32:259–269

    Article  Google Scholar 

  • Bradstock RA, Auld TD (1995) Soil temperatures during experimental bush fires in relation to fire intensity: consequences for legume germination and fire management in south-eastern Australia. J Appl Ecol 32:76–84

  • Bravo S, Kunst C, Leiva M, Ledesma R (2014) Response of hardwood tree regeneration to surface fires, western Chaco region, Argentina. For Ecol Manag 326:36–45

    Article  Google Scholar 

  • Bucher EH (1987) Herbivory in arid and semi-arid regions of Argentina. Rev Chil Hist Nat 60:265–273

    Google Scholar 

  • Butler DW, Fairfax RJ (2003) Buffel grass and fire in a Gidgee and Brigalow woodland: a case study from central Queensland. Ecol Manag Restor 4:120–125

    Article  Google Scholar 

  • Cabido M, Acosta A, Carranza ML, Díaz S (1992) La vegetación del Chaco Árido en el W de la provincia de Córdoba, Argentina. Doc phytosociol XIV:447–456

  • Cabido M, González C, Acosta A, Díaz S (1993) Vegetation changes along a precipitation gradient in central Argentina. Vegetatio 109:5–14

    Article  Google Scholar 

  • Cabido M, Manzur A, Carranza L, González Albarracín C (1994) La vegetación y el medio físico del Chaco Árido en la provicncia de Córdoba, Argentina Central. Phytocoenologia 24:423–460

    Article  Google Scholar 

  • Cabrera AL (1976) Regiones Fitogeográficas Argentinas. Enciclopedia Argentina de Agricultura y Jardinería Tomo II. Acme, Buenos Aires

    Google Scholar 

  • Campos CM, Ojeda RA (1997) Dispersal and germination of Prosopis flexuosa (Fabaceae) seeds by desert mammals in Argentina. J Arid Environ 35:707–714

    Article  Google Scholar 

  • Campos CM, Peco B, Campos VE, Malo JE, Giannoni SM, Suárez F (2008) Endozoochory by native and exotic herbivores in dry areas: consequences for germination and survival of Prosopis seeds. Seed Sci Res 18:91–100

    Article  Google Scholar 

  • Casillo J, Kunst C, Semmartin M (2012) Effects of fire and water availability on the emergence and recruitment of grasses, forbs and woody species in a semiarid Chaco savanna. Aust Ecol 37:452–459

  • Clua A, Fernández G, Ferro L, Dietrich M (2006) Drought stress conditions during seed development of narrowleaf birdsfoot trefoil (Lotus glaber) influences seed production and subsequent dormancy and germination. Lotus Newsl 36:58–63

    Google Scholar 

  • Conti G, Díaz S (2013) Plant functional diversity and carbon storage—an empirical test in semiarid forest ecosystems. J Ecol 101:18–28

    Article  CAS  Google Scholar 

  • Cony MA, Trione SO (1996) Germination with respect to temperature of two Argentinian Prosopis species. J Arid Environ 33:225–236

    Article  Google Scholar 

  • De Noir FA, Bravo S, Abdala R (2002) Mecanismos de dispersión de algunas especies leñosas nativas del Chaco Occidental y Serrano. Quebracho 9:140–150

    Google Scholar 

  • Di Rienzo JA, Guzmán AW, Casanoves F (2002) A multiple-comparisons method based on the distribution of the root node distance of a binary tree. J Agric Biol Envir S 7:129–142

    Article  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW, InfoStat versión (2013) Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  • Díaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122

    Article  Google Scholar 

  • Díaz S, Cabido M, Zak M, Martínez Carretero E, Araníbar J (1999) Plant functional traits, ecosystem structure and land-use history along a climatic gradient in central-western Argentina. J Veg Sci 10:651–660

    Article  Google Scholar 

  • Díaz S et al (2007) Plant trait responses to grazing—a global synthesis. Glob Chang Biol 13:313–341

    Article  Google Scholar 

  • Diemer M (2002) Population stasis in a high-elevation herbaceous plant under moderate climate warming. Basic Appl Ecol 3:77–83

  • Evenari M, Koller D, Gutterman Y (1966) Effects of the environment of the mother plants on germination by control of seed-coat permeability to water in Ononis sicula Guss. Aust J Biol Sci 19:1007–1016

    CAS  Google Scholar 

  • Figueroa JA, Jaksic FM (2004) Latencia y banco de semillas en plantas de la región mediterránea de Chile central. Rev Chil Hist Nat 77:201–215

    Google Scholar 

  • Fitch EA, Walck JL, Hidayati SN (2007) Agroecosystem management for rare species of Paysonia (Brassicaceae): integrating their seed ecology and life cycle with cropping regimens in a changing climate. Am J Bot 94:102–110

  • Flora del Cono Sur (2014) Instituto de Botánica Darwinion-IBODA-CONICET-ANCEFN. [Cited Aug 27th 2014] (http://www2.darwin.edu.ar/Proyectos/FloraArgentina/FA.asp)

  • Fuentes ER, Hoffmann AJ, Poiani A, Alliende MC (1986) Vegetation change in large clearings: patterns in the Chilean matorral. Oecologia 68:358–366

    Article  Google Scholar 

  • Funes G, Venier P (2006) Dormancy and germination in three Acacia (Fabaceae) species from central Argentina. Seed Sci Res 16:77–82

    Article  Google Scholar 

  • Funes G, Díaz S, Venier P (2009) La temperatura como principal determinante de la germinación en especies del Chaco seco de Argentina. Ecol Austral 19:129–138

    Google Scholar 

  • Gould SJ, Vrba ES (1982) Exaptation—a missing term in the science of form. Paleobiology 8:4–15

    Google Scholar 

  • Grau HR, Gasparri NI, Aide TM (2008) Balancing food production and nature conservation in the Neotropical dry forests of northern Argentina. Glob Change Biol 14:985–997

  • Gurvich D, Enrico L, Cingolani AM (2005) Linking plant functional traits with post-fire sprouting vigour in woody species in central Argentina. Aust Ecol 30:789–796

  • Gutiérrez JR, Armesto J (1981) El rol del ganado en la dispersión de semillas de Acacia caven. Cienc Investig Agrar 8:3–8

    Google Scholar 

  • Gutterman Y, Evenari M (1972) The influence of day length on seed coat colour, an index of water permeability, of the desert annual Ononis sicula Guss. J Ecol 60:713–719

    Article  Google Scholar 

  • Gutterman Y, Heydecker W (1973) Studies of the surfaces of desert plant seeds. I. Effect of day length upon maturation of the seed-coat of Ononis sicula Guss. Ann Bot 37:1049–1050

    Google Scholar 

  • Hanley ME, Lamont BB (2000) Heat pre-treatment and the germination of soil- and canopy-stored seeds of south-western Australian species. Acta Oecol 21:315–321

    Article  Google Scholar 

  • Hanley ME, Fenner M, Ne’eman G (2001) Pregermination heat shock and seedling growth of fire-following Fabaceae from four Mediterranean-climate regions. Acta Oecol 22:315–320

    Article  Google Scholar 

  • Harrington JF (1949) Hard seeds in bean and other legumes. Seed World 64:42–44

    Google Scholar 

  • Herranz JM, Ferrandis P, Martínez-Sánchez JJ (1998) Influence of heat on seed germination of seven Mediterranean Leguminosae species. Plant Ecol 136:95–103

    Article  Google Scholar 

  • Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8:23–29

  • IPCC (2013) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Jaureguiberry P (2012) Caracteres funcionales, flamabilidad y respuesta al fuego de especies vegetales dominantes en distintas situaciones de uso de la tierra en el centro-oeste de Argentina. PhD dissertation, Facultad de Cs. Ex. Fís. y Nat., Universidad Nacional de Córdoba, Córdoba, Argentina

  • Karssen CM (1970) Light-promoted germination of the seeds of Chenopodium album L. III. Effect of the photoperiod during growth and development of the plants on the dormancy of the produced seeds. Acta Bot Neer 19:81–94

    Google Scholar 

  • Keeley JE (1987) Role of Fire in Seed Germination of Woody Taxa in California Chaparral. Ecology 68:434–443

    Article  Google Scholar 

  • Keeley JE (1991) Seed germination and life history syndromes in the California Chaparral. Bot Rev 57:81–116

    Article  Google Scholar 

  • Keeley JE (1995) Seed-germination patterns in fire-prone Mediterranean-climate regions. In: Arroyo MTK, Zedler PH, Fox MD (eds) Ecology and biogeography of Mediterranean ecosystems in Chile, California, and Australia. Springer, New York, pp 239–273

    Chapter  Google Scholar 

  • Keeley JE, Baer-Keeley M (1999) Role of charred wood, heat-shock, and light in germination of postfire Phrygana species from the eastern Mediterranean Basin. Israel J Plant Sci 47:11–16

    Article  Google Scholar 

  • Keeley JE, Bond WJ (1997) Convergent seed germination in South African fynbos and Californian chaparral. Plant Ecol 133:153–167

    Article  Google Scholar 

  • Keeley JE, Fotheringham CJ (1998) Smoke-induced seed germination in California Chaparral. Ecology 79:2320–2336

    Article  Google Scholar 

  • Keeley JE, Fotheringham CJ (2000) Role of fire in regeneration from seed. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities. CAB International, Wallingford

    Google Scholar 

  • Keeley JE, Fotheringham CJ (2003) Impact of past, present, and future fire regimes on North American mediterranean shrublands. In: Veblen TT, Baker WL, Montenegro G, Swetnam TW (eds) Fire and climatic change in temperate ecosystems of the Western Americas. Springer, New York

    Google Scholar 

  • Keeley JE, Morton BA, Pedrosa A, Trotter P (1985) Role of allelopathy, heat and charred wood in the germination of Chaparral herbs and suffrutescents. J Ecol 73:445–458

    Article  Google Scholar 

  • Kigel J, Offir M, Koller D (1977) Control of the germination responses of Amaranthus retroflexus L. seeds by their parental photothermal environment. J Exp Bot 28:1125–1136

    Article  Google Scholar 

  • Kigel J, Gibly A, Negbi M (1979) Seed germination in Amaranthus retroflexus L. as affected by the photoperiod and age during flower reduction of the parent plant. J Exp Bot 30:997–1002

    Article  Google Scholar 

  • Koller D (1962) Preconditioning of germination in lettuce at time of fruit ripening. Am J Bot 49:41–844

    Article  Google Scholar 

  • Lloret F, Verdú M, Flores-Hernández N, Valiente-Banuet A (1999) Fire and resprouting in Mediterranean ecosystems: insights from an external biogeographical region, the Mexical shrubland. Am J Bot 86:1655–1661

    Article  CAS  PubMed  Google Scholar 

  • Lloret F, Estevan H, Vayreda J, Terradas J (2005) Fire regenerative syndromes of forest woody species across fire and climatic gradients. Oecologia 146:461–468

    Article  PubMed  Google Scholar 

  • Luna B, Moreno JM, Cruz A, Fernández-González F (2007) Heat-shock and seed germination of a group of Mediterranean plant species growing in a burned area: an approach based on plant functional types. Environ Exp Bot 60:324–333

    Article  Google Scholar 

  • Malo JE, Suárez F (1998) The dispersal of a dry-fruited shrub by red deer in a Mediterranean ecosystem. Ecography 21:204–211

    Article  Google Scholar 

  • Morello J (1970) Modelos de relaciones entre pastizales y leñosas colonizadoras en el Chaco argentino. IDIA 276:31–52

  • Morello J, Saravia Toledo C (1959) El Bosque Chaqueño I. Paisaje primitivo, paisaje natural y paisaje cultural en el oriente de Salta. Rev agron noroeste argent III:5–79

    Google Scholar 

  • Ne’eman G, Ne’eman R, Keith DA, Whelan RJ (2009) Does post-fire plant regeneration mode affect the germination response to fire-related cues? Oecologia 159:483–492

    Article  PubMed  Google Scholar 

  • Nikolaeva MG (1969) Physiology of deep dormancy in seeds. National Science Foundation, Washington, DC

    Google Scholar 

  • Nikolaeva MG (1977) Factors controlling the seed dormancy pattern. In: Khan AA (ed) The physiology and biochemistry of seed development, dormancy and germination. Elsevier, Amsterdam

    Google Scholar 

  • Noodén LD, Blakley KA, Grzybowski JM (1985) Control of seed coat thickness and permeability in soybean. Plant Physiol 79:543–545

    Article  PubMed Central  PubMed  Google Scholar 

  • Núñez MB, Bozzolo L (2006) Descripción de la dieta del zorro gris, Pseudalopex griseus (Canidae) (Gray, 1869), en el Parque Nacional Sierra de las Quijadas, San Luis, Argentina. Gayana 70:163–167

    Google Scholar 

  • Ooi MKJ, Auld TD, Denham AJ (2012) Projected soil temperature increase and seed dormancy response along an altitudinal gradient: implications for seed bank persistence under climate change. Plant Soil 353:289–303

  • Ooi MKJ, Denham AJ, Santana VM, Auld TD (2014) Temperature thresholds of physically dormant seeds and plant functional response to fire: variation among species and relative impact of climate change Ecol Evol 4:656–671

  • Paula S, Pausas JG (2008) Burning seeds: germination response to heat treatments in relation to resprouting ability. J Ecol 96:543–552

    Article  Google Scholar 

  • Pausas JG, Verdú M (2005) Plant persistence traits in fire-prone ecosystems of the Mediterranean basin: a phylogenetic approach. Oikos 109:196–202

    Article  Google Scholar 

  • Pérez Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234

    Article  Google Scholar 

  • Plan Nacional de Manejo del Fuego (PNMF) (2012) Estadística de incendios forestales 2012. Jefatura de Gabinete de Ministros, Presidencia de la Nación, Secretaría de Ambiente y Desarrollo Sustentable de la Nación, Buenos Aires, Argentina. [Cited Aug 27th 2014]. http://www.ambiente.gov.ar/archivos/web/PNEF/file/Incendios%202012%20corregido/Documento%20Completo.pdf

  • Plan Provincial de Manejo del Fuego (PPMF) (2007) Guía Para La Prevención De Incendios Forestales En Córdoba. Gobierno de la Provincia de Córdoba, Secretaría de Ambiente, Córdoba, Argentina. [Cited Aug 27th 2014]. http://www.cba.gov.ar/wp-content/4p96humuzp/2012/06/Guia-para-la-Pevencion-de-Incendios-Forestales.pdf

  • Pugnaire F, Lozano J (1997) Effects of soil disturbance, fire and litter accumulation on the establishment of Cistus clusii seedlings. Plant Ecol 131:207–213

    Article  Google Scholar 

  • Quinlivan BJ (1971) Seed coat impermeability in legumes. J Aust I Agr Sci 37:283–295

    Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org

  • Renison D, Valladares G, Martella MB (2010) The effect of passage through the gut of the Greater Rhea (Rhea americana) on germination of tree seeds: implications for forest restoration. Emu 110:125–131

    Article  Google Scholar 

  • Serbent MP, Periago ME, Leynaud GC (2011) Mazama gouazoubira (Cervidae) diet during the dry season in the arid Chaco of Córdoba (Argentina). J Arid Environ 75:87–90

    Article  Google Scholar 

  • Tálamo A, Caziani SM (2003) Variation in woody vegetation among sites with different disturbance histories in the Argentine Chaco. For Ecol Manag 184:79–92

  • Thanos CA, Rundel PW (1995) Fire-followers in chaparral: nitrogenous compounds trigger seed germination. J Ecol 83:207–216

  • Thanos CA, Georghiou K (1988) Ecophysiology of fire-stimulated seed germination in Cistus incanus ssp. creticus (L.) Hey wood and C. salvifolius L. Plant, Cell Environ 11:841–849

    Article  Google Scholar 

  • Torres R, Giorgis M, Trillo C, Volkmann L, Demaio P, Heredia J, Renison D (2013) Post-fire recovery occurs overwhelmingly by resprouting in the Chaco Serrano forest of Central Argentina. Austral Ecol 39:346–354

    Article  Google Scholar 

  • Trabaud L (1980) Impact biologique et écologique des feux de végétation sur l’organisation, la structure et l’évolution de la végétation des garrigues du Bas-Languedoc. PhD thesis, Université Montpellier li Sciences et Techniques du Languedoc, Montpellier

  • Traveset A (1998) Effect of seed passage through vertebrate frugivores’ guts on germination: a review. Persp Plant Ecol Evol Syst 1(2):151–190

    Article  Google Scholar 

  • Valbuena L, Vera ML (2002) The effects of thermal scarification and seed storage on germination of four heathland species. Plant Ecol 161:137–144

    Article  Google Scholar 

  • Varela O, Bucher EH (2006) Passage time, viability, and germination of seeds ingested by foxes. J Arid Environ 67:566–578

    Article  Google Scholar 

  • Venier P (2011) ¿Pueden los caracteres regenerativos explicar la coexistencia de especies de Acacia (Fabaceae) en los bosques xerófilos de la Provincia de Córdoba? PhD dissertation, Universidad Nacional de Córdoba, Córdoba

  • Venier P, Funes G, Carrizo García C (2012) Physical dormancy and histological features of seeds of five Acacia species (Fabaceae) from xerophytic forests in central Argentina. Flora 207:39–46

    Article  Google Scholar 

  • Von Abrams GJ, Hand ME (1956) Seed dormancy in Rosa as a function of climate. Am J Bot 43:7–12

    Article  Google Scholar 

  • Walck JL, Dixon KW (2009) Time to future-proof plants in storage. Nature 462:721

  • Wells PV (1969) The relation between mode of reproduction and extent of speciation in woody genera of the California chaparral. Evolution 23:264–267

    Article  Google Scholar 

  • Whelan RJ (1995) The ecology of fire. Cambridge University Press, Cambridge

    Google Scholar 

  • Wurzberger J, Koller D (1976) Differential effects of the parental photothermal environment on development of dormancy in caryopses of Aegilops kotschyi. J Exp Bot 27:43–48

    Article  Google Scholar 

  • Zalazar M, Funes G, Venier P (2009) Factores que afectan la germinación de Justicia squarrosa Griseb, forrajera nativa de la región chaqueña de la Argentina. Agriscientia 26:1–6

    Google Scholar 

  • Zuloaga FO, Morrone O (1996) Catálogo de las Plantas Vasculares de la República Argentina I. Monogr Syst Bot Mo Bot Gard 60:1–323

    Google Scholar 

  • Zuloaga FO, Morrone O (1999) Catálogo de las Plantas Vasculares de la República Argentina II. Monogr Syst Bot Mo Bot Gard 74:1–1269

    Google Scholar 

  • Zuloaga FO, Nicora EG, Rúgolo de Agrasar ZE, Morrone O, Pensiero J, Cialdella AM (1994) Catálogo de la Familia Poaceae en la República Argentina. Monogr Syst Bot Mo Bot Gard 47:1–178

    Google Scholar 

Download references

Acknowledgments

We are grateful to J. Di Rienzo and F. Casanoves for statistical advice and to G. Funes for useful comments on experimental design. We thank Dr. Juan Armesto and two anonymous reviewers for useful comments that greatly helped improving this paper. This study is a contribution of Núcleo DiverSus, endorsed by DIVERSITAS and the IGBP Global Land Project, and supported by FONCyT, CONICET, SeCyT-Universidad Nacional de Córdoba and the Inter-American Institute for Global Change Research (IAI) CRN 2015 and SGP-CRA 2015, which were supported by the US National Science Foundation (grants GEO-0452325 and GEO-1138881). The experiments comply with the current laws of the country (Argentina) in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Jaureguiberry.

Additional information

Communicated by Juan J. Armesto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 64 kb)

Supplementary material 2 (DOC 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaureguiberry, P., Díaz, S. Post-burning regeneration of the Chaco seasonally dry forest: germination response of dominant species to experimental heat shock. Oecologia 177, 689–699 (2015). https://doi.org/10.1007/s00442-014-3161-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3161-x

Keywords

Navigation