Skip to main content

Advertisement

Log in

General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types

  • Global change ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Respiration is instrumental for survival and growth of plants, but increasing costs of maintenance processes with warming have the potential to change the balance between photosynthetic carbon uptake and respiratory carbon release from leaves. Climate warming may cause substantial increases of leaf respiratory carbon fluxes, which would further impact the carbon balance of terrestrial vegetation. However, downregulation of respiratory physiology via thermal acclimation may mitigate this impact. We have conducted a meta-analysis with data collected from 43 independent studies to assess quantitatively the thermal acclimation capacity of leaf dark respiration to warming of terrestrial plant species from across the globe. In total, 282 temperature contrasts were included in the meta-analysis, representing 103 species of forbs, graminoids, shrubs, trees and lianas native to arctic, boreal, temperate and tropical ecosystems. Acclimation to warming was found to decrease respiration at a set temperature in the majority of the observations, regardless of the biome of origin and growth form, but respiration was not completely homeostatic across temperatures in the majority of cases. Leaves that developed at a new temperature had a greater capacity for acclimation than those transferred to a new temperature. We conclude that leaf respiration of most terrestrial plants can acclimate to gradual warming, potentially reducing the magnitude of the positive feedback between climate and the carbon cycle in a warming world. More empirical data are, however, needed to improve our understanding of interspecific variation in thermal acclimation capacity, and to better predict patterns in respiratory carbon fluxes both within and across biomes in the face of ongoing global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amthor JS (1984) The role of maintenance respiration in plant growth. Plant Cell Environ 7:561–569. doi:10.1111/1365-3040.ep11591833

    Google Scholar 

  • Armstrong AF, Logan DC, Tobin AK, O’Toole P, Atkin OK (2006) Heterogeneity of plant mitochondrial responses underpinning respiratory acclimation to the cold in Arabidopsis thaliana leaves. Plant Cell Environ 29:940–949. doi:10.1111/j.1365-3040.2005.01475.x

    Article  PubMed  Google Scholar 

  • Arneth A, Mercado L, Kattge J, Booth BBB (2012) Future challenges of representing land–processes in studies on land–atmosphere interactions. Biogeoscience 9:3545–3577. doi:10.5194/bgd-9-3545-2012

    Article  Google Scholar 

  • Arnone JA, Körner C (1997) Temperature adaptation and acclimation potential of leaf dark respiration in two species of Ranunculus in warm and cold habitats. Arct Alp Res 29:122–125. doi:10.2307/1551842

    Article  Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351. doi:10.1016/S1360-1385(03)00136-5

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Holly C, Ball MC (2000) Acclimation of snow gum (Eucalyptus pauciflora) leaf respiration to season and diurnal variations in temperature: the importance of changes in the capacity and temperature sensitivity of respiration. Plant Cell Environ 23:15–26. doi:10.1046/j.1365-3040.2000.00511.x

    Article  Google Scholar 

  • Atkin OK, Bruhn D, Tjoelker MG (2005) Response of plant respiration to changes in temperature: mechanisms and consequences of variations in Q 10 values and acclimation. In: Lambers H, Ribas-Carbo M (eds) Plant respiration: from cell to ecosystem. Springer SBM, Dordrecht, pp 95–135

  • Ayub G, Smith RA, Tissue DT, Atkin OK (2011) Impacts of drought on leaf respiration in darkness and light in Eucalyptus saligna exposed to industrial-age atmospheric CO2 and growth temperature. New Phytol 190:1003–1018. doi:10.1111/j.1469-8137.2011.03673.x

    Article  PubMed  Google Scholar 

  • Billings WD, Godfrey PJ, Chabot BF, Bourque DP (1971) Metabolic acclimation to temperature in arctic and alpine ecotypes of Oxyria digyna. Arct Alp Res 3:277–289. doi:10.2307/1550044

    Article  Google Scholar 

  • Bolstad PV, Reich P, Lee T (2003) Rapid temperature acclimation of leaf respiration rates in Quercus alba and Quercus rubra. Tree Physiol 23:969–976. doi:10.1093/treephys/23.14.969

    Article  Google Scholar 

  • Booth BBB, Jones CD, Collins M, Totterdell IJ, Cox PM, Sitch S, Huntingford C, Betts R, Harris GR, Lloyd J (2012) High sensitivity of future global warming to land carbon cycle processes. Environ Res Lett 7:024002. doi:10.1088/1748-9326/7/2/024002

    Article  Google Scholar 

  • Bruhn D, Egerton JJG, Loveys BR, Ball MC (2007) Evergreen leaf respiration acclimates to long-term nocturnal warming under field conditions. Glob Chang Biol 13:1216–1223. doi:10.1111/j.1365-2486.2007.01351.x

    Article  Google Scholar 

  • Campbell C, Atkinson L, Zaragoza-Castells J, Lundmark M, Atkin O, Hurry V (2007) Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional type. New Phytol 176:375–389. doi:10.1111/j.1469-8137.2007.02183.x

    Article  CAS  PubMed  Google Scholar 

  • Centritto M, Brilli F, Fodale R, Loreto F (2011) Different sensitivity of isoprene emission, respiration and photosynthesis to high growth temperature coupled with drought stress in black poplar (Populus nigra) saplings. Tree Physiol 31:275–286. doi:10.1093/treephys/tpq112

    Article  CAS  PubMed  Google Scholar 

  • Chabot B, Billings W (1972) Origin and ecology of the Sierran alpine vegetation. Ecol Monogr 42:163–199. doi:10.2307/1942262

    Article  Google Scholar 

  • Cheesman AW, Winter K (2013a) Elevated night-time temperatures increase growth in seedlings of two tropical pioneer tree species. New Phytol 197:1185–1192. doi:10.1111/nph.12098

    Article  CAS  PubMed  Google Scholar 

  • Cheesman AW, Winter K (2013b) Growth response and acclimation of CO2 exchange characteristics to elevated temperatures in tropical tree seedlings. J Exp Bot 64:3817–3828. doi:10.1093/jxb/ert211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chi Y, Xu M, Shen R, Yang Q, Huang B, Wan S (2013) Acclimation of foliar respiration and photosynthesis in response to experimental warming in a temperate steppe in northern China. PLoS One 8(2):e56482. doi:10.1371/journal.pone.0056482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Corlett RT (2011) Impacts of warming on tropical lowland rainforests. Trends Ecol Evol 27:145–150. doi:10.1016/j.tree.2011.06.015

    Google Scholar 

  • Corlett RT (2012) Climate change in the tropics: the end of the world as we know it? Biol Conserv 151:22–25. doi:10.1016/j.biocon.2011.11.027

    Article  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187. doi:10.1038/35041539

    Article  CAS  PubMed  Google Scholar 

  • Cunningham SC, Read J (2002) Comparison of temperate and tropical rainforest tree species: photosynthetic responses to growth temperature. Oecologia 133:112–119. doi:10.1007/s00442-002-1034-1

    Article  Google Scholar 

  • Cunningham SC, Read J (2003a) Do temperate rainforest trees have a greater ability to acclimate to changing temperatures than tropical rainforest trees? New Phytol 157:55–64. doi:10.1046/j.1469-8137.00652.x

    Article  Google Scholar 

  • Cunningham S, Read J (2003b) Comparison of temperate and tropical rainforest tree species: growth responses to temperature. J Biogeog 30:143–153. doi:10.1046/j.1365-2699.2003.00811.x

    Article  Google Scholar 

  • Dillaway DN, Kruger EL (2011) Leaf respiratory acclimation to climate: comparisons among boreal and temperate tree species along a latitudinal transect. Tree Physiol 31:1114–1127. doi:10.1093/treephys/tpr097

    Article  PubMed  Google Scholar 

  • Dillon ME, Wang G, Huey RB (2010) Global metabolic impacts of recent climate warming. Nature 467:704–706. doi:10.1038/nature09407

    Article  CAS  PubMed  Google Scholar 

  • Doughty CE, Goulden ML (2008) Are tropical forests near a high temperature threshold? J Geophys Res Biogeosci 113:G00B07. doi:10.1029/2007JG000632

  • Frantz JM, Cometti NN, Bugbee B (2004) Night temperature has a minimal effect on respiration and growth in rapidly growing plants. Ann Bot 94:155–166. doi:10.1093/aob/mch122

    Article  PubMed Central  PubMed  Google Scholar 

  • Gandin A, Koteyeva NK, Voznesenskaya EV, Edwards GE, Cousins AB (2014) The acclimation of photosynthesis and respiration to temperature in the C3–C4 intermediate Salsola divaricata: induction of high respiratory CO2 release under low temperature. Plant Cell Environ 37:2601–2612. doi:10.1111/pce.12345

  • Ghalambor CK, Huey RB, Martin PR, Tewksbury JJ, Wang G (2006) Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr Comp Biol 46:5–17. doi:10.1093/icb/icj003

    Article  PubMed  Google Scholar 

  • Janzen DH (1967) Why mountain passes are higher in the tropics. Am Nat 101:233–249

    Article  Google Scholar 

  • King AW, Gunderson CA, Post WM, Weston DJ, Wullschleger SD (2006) Plant respiration in a warmer world. Science 312:536–537. doi:10.1126/science.1114166

    Article  CAS  PubMed  Google Scholar 

  • Krause GH, Cheesman AW, Winter K, Krause B, Virgo A (2013) Thermal tolerance, net CO2 exchange and growth of a tropical tree species, Ficus insipida, cultivated at elevated daytime and nighttime temperatures. J Plant Physiol 170:822–827. doi:10.1016/j.jplph.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  • Larigauderie A, Körner C (1995) Acclimation of leaf dark respiration to temperature in alpine and lowland plant species. Ann Bot 76:245–252. doi:10.1006/anbo.1995.1093

    Article  Google Scholar 

  • Lee TD, Reich PB, Bolstad PV (2005) Acclimation of leaf respiration to temperature is rapid and related to specific leaf area, soluble sugars and leaf nitrogen across three temperate deciduous tree species. Funct Ecol 19:640–647. doi:10.1111/j.1365-2435.2005.01023.x

    Article  Google Scholar 

  • Loveys BR, Atkinson LJ, Sherlock DJ, Roberts RL, Fitter AH, Atkin OK (2003) Thermal acclimation of leaf and root respiration, an investigation comparing inherently fast- and slow-growing plant species. Glob Chang Biol 9:895–910. doi:10.1046/j.1365-2486.2003.00611.x

    Article  Google Scholar 

  • Luo YQ (2007) Terrestrial carbon-cycle feedback to climate warming. Ann Rev Ecol Evol Syst 38:683–712. doi:10.1146/annurev.ecolsys.38.091206.095808

    Article  Google Scholar 

  • Lusk CH, Reich PB (2000) Relationships of leaf dark respiration with light environment and tissue nitrogen content in juveniles of 11 cold-temperate tree species. Oecologia 123:318–329. doi:10.1007/s004420051018

    Article  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997. doi:10.1126/science.1098704

    Article  CAS  PubMed  Google Scholar 

  • Ow LF, Griffin KL, Whitehead D, Walcroft AS, Turnbull MH (2008a) Thermal acclimation of leaf respiration but not photosynthesis in Populus deltoides × nigra. New Phytol 178:123–134. doi:10.1111/j.1469-8137.2007.02357.x

    Article  PubMed  Google Scholar 

  • Ow LF, Whitehead D, Walcroft AS, Turnbull MH (2008b) Thermal acclimation of photosynthesis and respiration in Pinus radiata. Funct Plant Biol 35:448–461. doi:10.1071/FP08104

    Article  Google Scholar 

  • Ow LF, Whitehead D, Walcroft AS, Turnbull MH (2010) Seasonal variation in foliar carbon exchange in Pinus radiata and Populus deltoides: respiration acclimates fully to changes in temperature but photosynthesis does not. Glob Chang Biol 16:288–302. doi:10.1111/j.1365-2486.2009.01892.x

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Phillips OL, Jackson RB (2013) The structure, distribution, and biomass of the world’s forests. Ann Rev Ecol Evol Syst 44:593–622. doi:10.1146/annurev-ecolsys-110512-135914

    Article  Google Scholar 

  • Penning de Vries FWT (1975) Cost of maintenance processes in plant cells. Ann Bot 39:77–92

    Google Scholar 

  • Raison JK, Berry JA, Armond PA, Pike CS, Turner NC, Kramer PJ (1980) Membrane properties in relation to the adaptation of plants to temperature stress. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 261–273

    Google Scholar 

  • Rodríguez-Calcerrada J, Atkin OK, Robson TM, Zaragoza-Castells J, Gil L, Aranda I (2010) Thermal acclimation of leaf dark respiration of beech seedlings experiencing summer drought in high and low light environments. Tree Physiol 30:214–224. doi:10.1093/treephys/tpp104

    Article  PubMed  Google Scholar 

  • Rook DA (1969) The influence of growing temperature on photosynthesis and respiration of Pinus radiata seedlings. N Z J Bot 7:43–55. doi:10.1080/0028825X.1969.10429101

    Article  CAS  Google Scholar 

  • Ryan MG (1991) Effects of climate change on plant respiration. Ecol Appl 1:157–167. doi:10.2307/1941808

    Article  Google Scholar 

  • Searle SY, Turnbull MH (2011) Seasonal variation of leaf respiration and the alternative pathway in field-grown Populus × canadensis. Physiol Plant 141:332–342. doi:10.1111/j.1399-3054.2010.01442.x

    Article  CAS  PubMed  Google Scholar 

  • Searle SY, Thomas S, Griffin KL, Horton T, Kornfeld A, Yakir D, Hurry V, Turnbull MH (2011) Leaf respiration and alternative oxidase in field-grown alpine grasses respond to natural changes in temperature and light. New Phytol 189:1027–1039. doi:10.1111/j.1469-8137.2010.03557.x

    Article  CAS  PubMed  Google Scholar 

  • Shi FS, Wu Y, Wu N, Luo P (2010) Different growth and physiological responses to experimental warming of two dominant plant species Elymus nutans and Potentilla anserina in an alpine meadow of the eastern Tibetan Plateau. Photosynthetica 48:437–445. doi:10.1007/s11099-010-0058-8

    Article  Google Scholar 

  • Silim SN, Ryan N, Kubien DS (2010) Temperature responses of photosynthesis and respiration in Populus balsamifera L.: acclimation versus adaptation. Photosynth Res 104:19–30. doi:10.1007/s11120-010-9527-y

    Article  CAS  PubMed  Google Scholar 

  • Slot M, Wright SJ, Kitajima K (2013) Foliar respiration and its temperature sensitivity in trees and lianas: in situ measurements in the upper canopy of a tropical forest. Tree Physiol 33:505–515. doi:10.1093/treephys/tpt026

    Article  PubMed  Google Scholar 

  • Slot M, Rey-Sánchez AC, Gerber S, Lichstein JW, Winter K, Kitajima K (2014a) Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance. Glob Chang Biol 20:2915–2926. doi:10.1111/gcb.12563

    Article  PubMed  Google Scholar 

  • Slot M, Rey-Sánchez AC, Winter K, Kitajima (2014b) Trait-based scaling of temperature-dependent foliar respiration in a species-rich tropical forest canopy. Funct Ecol 28:1074–1086. doi:10.1111/1365-2435.12263

  • Smith NG, Dukes JS (2013) Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob Chang Biol 19:45–63. doi:10.1111/j.1365-2486.2012.02797.x

    Article  PubMed  Google Scholar 

  • Smith EM, Hadley EB (1974) Photosynthetic and respiratory acclimation to temperature in Ledum groenlandicum populations. Arct Alp Res 6:13–27. doi:10.2307/1550366

    Article  Google Scholar 

  • Stitt M, Hurry VM (2002) A plant for all seasons: alteration in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr Opin Plant Biol 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y et al (2013). Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 317–382

  • Strain BR (1969) Seasonal adaptations in photosynthesis and respiration in four desert shrubs growing in situ. Ecology 50:511–513. doi:10.2307/1933911

    Article  Google Scholar 

  • Teskey RO, Will RE (1999) Acclimation of loblolly pine (Pinus taeda) seedlings to high temperatures. Tree Physiol 19:519–525. doi:10.1093/treephys/19.8.519

    Article  PubMed  Google Scholar 

  • Tjoelker MG, Oleksyn J, Reich PB (1999) Acclimation of respiration to temperature and CO2 in seedlings of boreal tree species in relation to plant size and relative growth rate. Glob Chang Biol 49:679–691. doi:10.1046/j.1365-2486.1999.00257.x

    Article  Google Scholar 

  • Tjoelker MG, Oleksyn J, Reich PB, Żytkowiak R (2008) Coupling of respiration, nitrogen, and sugars underlies convergent temperature acclimation in Pinus banksiana across wide-ranging sites and populations. Glob Chang Biol 14:782–797. doi:10.1111/j.1365-2486.2008.01548.x

    Article  Google Scholar 

  • Tjoelker MG, Oleksyn J, Lorenc-Plucinska G, Reich PB (2009) Acclimation of respiratory temperature responses in northern and southern populations of Pinus banksiana. New Phytol 181:218–229. doi:10.1111/j.1469-8137.2008.02624.x

    Article  CAS  PubMed  Google Scholar 

  • Tobiessen PL (1976) Thermal acclimation of dark respiration in coastal and desert populations of Isomeris arborea. Am Midl Nat 96:462–567. doi:10.2307/2424084

    Article  Google Scholar 

  • Wang K, Kellomäki S, Laitinen K (1995) Effects of needle age, long-term temperature and CO2 treatments on the photosynthesis of Scots pine. Tree Physiol 15(4):211–218. doi:10.1093/treephys/15.4.211

    Article  PubMed  Google Scholar 

  • Way DA, Sage RF (2008) Thermal acclimation of photosynthesis in black spruce [Picea mariana (Mill.) BSP]. Plant Cell Environ 31:1250–1262. doi:10.1111/j.1365-3040.2008.01842.x

    Article  CAS  PubMed  Google Scholar 

  • Wertin TM, McGuire MA, van Iersel M, Ruter JM, Teskey RO (2012) Effects of elevated temperature and [CO2] on photosynthesis, leaf respiration, and biomass accumulation of Pinus taeda seedlings at a cool and a warm site within the species’ current range. Can J For Res 42:943–957. doi:10.1139/x2012-050

    Article  CAS  Google Scholar 

  • Wright IJ, Reich PB, Atkin OK, Lusk CH, Tjoelker MG, Westoby M (2006) Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites. New Phytol 169:309–319. doi:10.1111/j.1469-8137.2005.01590.x

    Article  CAS  PubMed  Google Scholar 

  • Wright SJ, Muller-Landau HC, Schipper J (2009) The future of tropical species on a warmer planet. Conserv Biol 23:1418–1426. doi:10.1111/j.1523-1739.2009.01337.x

    Article  PubMed  Google Scholar 

  • Xiong FS, Mueller EC, Day TA (2000) Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes. Am J Bot 87:700–710

    Article  CAS  PubMed  Google Scholar 

  • Yin HJ, Liu Q, Lai T (2008) Warming effects on growth and physiology in the seedlings of the two conifers Picea asperata and Abies faxoniana under two contrasting light conditions. Ecol Res 23:459–469. doi:10.1007/s11284-007-0404-x

    Article  Google Scholar 

  • Zha TS, Wang KY, Ryyppö A, Kellomäki S (2002) Impact of needle age on the response of respiration in Scots pine to long-term elevation of carbon dioxide concentration and temperature. Tree Physiol 22:1241–1248. doi:10.1093/treephys/22.17.1241

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Liu X, Wallace LL, Luo Y (2007) Photosynthetic and respiratory acclimation to experimental warming for four species in a tallgrass prairie ecosystem. J Integr Plant Biol 49:270–281. doi:10.1111/j.1744-7909.2007.00374.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge three anonymous reviewers for their comments on an earlier version of this paper. Financial support came from National Science Foundation-Integrated Organismal Systems Grant 1051789 (KK) and a Smithsonian Tropical Research Institute FOREST-GEO post-doctoral research fellowship (MS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn Slot.

Additional information

Communicated by Rowan Sage.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slot, M., Kitajima, K. General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types. Oecologia 177, 885–900 (2015). https://doi.org/10.1007/s00442-014-3159-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3159-4

Keywords

Navigation