Skip to main content
Log in

Nitrogen deposition potentially contributes to oak regeneration failure in the Midwestern temperate forests of the USA

  • Special Topic: Nitrogen Deposition Reassessed
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

We conducted a 7-year field study at two oak-dominated forest sites which differ in their atmospheric N deposition to test the hypothesis that red oak regeneration failure in the upper Midwestern US forests, at least in part, results from increased N load. The sites are located in Swallow Cliffs (SC) in Cook County, Illinois, and Indiana Dunes National Lakeshore (IDNL) in Porter County, Indiana. Annual wet NO3 deposition for the 22 years immediately prior to the experiments was significantly higher in IDNL than in the SC site. Results from common garden experiments showed that oak seedling biomass was 60 % lower at IDNL compared with SC, but there was little site effect on growth of maple seedlings. Experimental N addition also resulted in a 45 % decrease in the total biomass of the oak seedlings at SC, but had no significant effect on the biomass at IDNL. Maple seedlings responded little to experimental fertilization. The growth rate of mature oak trees was also lower at IDNL but to a much smaller extent than that of seedlings. Maple trees did not significantly differ between sites. We conclude that: (1) chronic N load adversely affects seedling performance of red oak, but not sugar maple, in these temperate forests; and (2) the seedling establishment phase rather than the adult tree is the likely target stage for this adverse effect of N loading. The exact mechanisms for the differential effects of N on these co-occurring species are not clear, but different plasticity in fractional biomass and N allocation to the leaves might be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aber JD Driscoll CT 1997 Effects of land use, climate variation, and N deposition on N cycling and C storage in northern hardwood forests. Glob Biogeochem Cycles 11. 10.1029/97GB01366 ISSN:0886–6236

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. Bioscience 39(6):378–386

    Article  Google Scholar 

  • Aber JD, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems—hypotheses revisited. Bioscience 48(11):921–934

    Article  Google Scholar 

  • Aber JD, Goodale CL, Ollinger SV, Smith ML, Magill AH, Martin ME, Hallett RA, Stoddard JL (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53(4):375–389

    Article  Google Scholar 

  • Abrahamson W, Caswell H (1982) On the comparative allocation of biomass, energy and nutrients in plants. Ecology 63:982–991

    Article  Google Scholar 

  • Abrams MD (2003) Where has all the white oak gone? Bioscience 53:927–939

    Article  Google Scholar 

  • Aldrich PR, Parker GR, Romero-Severson J, Michler CH (2005) Confirmation of oak recruitment failure in Indiana old-growth forest: 75 years of data. For Sci 51:406–416

    Google Scholar 

  • Alexander HD, Arthur MA (2009) Foliar morphology and chemistry of upland oaks, red maple, and sassafras seedlings in response to single and repeated prescribed fires. Can J For Res 39:740–754. doi:10.1139/x09-007

    Article  CAS  Google Scholar 

  • Alexander HD, Arthur MA, Loftis DL, Green SR (2008) Survival and growth of upland oak and co-occurring competitor seedlings following single and repeated prescribed fires. For Ecol Manage 256:1021–1030. doi:10.1016/j.foreco.2008.06.004

    Article  Google Scholar 

  • Avis PG, Mueller GM, Lussenhop J (2008) Ectomycorrhizal fungal communities in two North American oak forests respond to nitrogen addition. New Phytol 179:472–483

    Article  CAS  PubMed  Google Scholar 

  • Baxter J, Pickett STA, Carreiro MM, Dighton J (1999) Ectomycorrhizal diversity and community structure in oak forest stands exposed to contrasting anthropogenic impacts. Can J Bot 77:771–782

    Google Scholar 

  • Bazzaz FA (1997) Allocation of resources in plants: state-of-the-science and critical questions. In: Bazzaz FA, Grace J (eds) Plant resource allocation. Physiological Ecology Series of Academic Press, San Diego, pp 14–37

    Google Scholar 

  • Bedison JE, McNeil BE (2009) Is the growth of temperate forest trees enhanced along an ambient nitrogen deposition gradient? Ecology 90(7):1736–1742

    Article  PubMed  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman J-W, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59. doi:10.1890/08-1140.1

    Article  CAS  PubMed  Google Scholar 

  • Borden KK (2007) Seasonal dynamics of soil nitrogen in temperate forests affected by anthropogenic nitrogen deposition. Master thesis, University of Illinois at Chicago, Chicago, IL, USA

  • Boudsocq S, Niboyet A, Lata JC, Raynaud X, Loeuille N, Mathieu J, Blouin M, Abbadie L, Barot S (2012) Plant preference for ammonium versus nitrate: a neglected determinant of ecosystem functioning? Am Nat 180:60–69

    Article  CAS  PubMed  Google Scholar 

  • Bowles ML, Jones MD (2008) Chronological change in old-growth forests of the Chicago region. Report to the Illinois department of natural resources and the Chicago wilderness. The Morton Arboretum, Lisle, Illinois, US

  • Bowles ML, Jones M, McBride J, Bell T, Dunn C (2000) Structural composition and species richness indices for upland forests of the Chicago region. Erigenia 18:30–57

    Google Scholar 

  • Bowles ML, Jones M, Dunn C, McBride J, Bushey C, Moran R (2003) Twenty-year woody vegetation changes in northern flatwoods and mesic forest at Ryerson conservation area, Lake County, Illinois. Erigenia 18:30–57

    Google Scholar 

  • Bowles ML, Jones M, McBride J, Bell T, Dunn C (2005) Temporal instability in Chicago’s upland old growth forests. Chicago Wilderness J 3(2):5–6. http://www.chicagowilderness

  • Britto DT, Kronzucker HJ (2013) Ecological significance and complexity of N-source preference in plants. Ann Bot 112:957–963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brouwer R (1983) Functional equilibrium: sense or nonsense? Neth J Agric Sci 31:335–348

    Google Scholar 

  • Canham CD, Berkowitz AR, Kelly VR, Lovett GM, Ollinger SV, Schnurr J (1996) Biomass allocation and multiple resource limitation in tree seedlings. Can J For Res 26:1521–1530. doi:10.1139/x26-171

    Article  Google Scholar 

  • Catovsky S, Bazzaz FA (2002a) Feedbacks between canopy composition and seedlings regeneration in mixed conifer broadleaved forests. Oikos 98:403–420

    Article  Google Scholar 

  • Catovsky S, Bazzaz FA (2002b) Nitrogen availability influences regeneration of temperate tree species in the understory seedling bank. Ecol Appl 12:1056–1070. doi:10.2307/3061036

    Article  Google Scholar 

  • Catovsky S, Bradford MA, Hector A (2002) Biodiversity and ecosystem productivity: implications for carbon storage. Oikos 97:443–448. doi:10.1034/j.1600-0706.2002.970315.x

    Article  CAS  Google Scholar 

  • Cha DH, Appel HM, Frost CJ, Schultz JC, Steiner KC (2010) Red oak responses to nitrogen addition depend on herbivory type, tree family, and site. Forest Ecol and Manag 259:1930–1937. doi:10.1016/j.foreco.2010.02.004

    Article  Google Scholar 

  • Clark FB (1993) An historical perspective of oak regeneration. In: Proceedings oak regeneration: serious problems practical recommendations, Knoxville, Tenn, pp 3–13

  • Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715

    Article  CAS  PubMed  Google Scholar 

  • Clark CM, Morefield PE, Gilliam FS, Pard LH (2013) Estimated losses of plant biodiversity in the United States from historical N deposition (1985–2010). Ecology 94:1441–1448

    Article  PubMed  Google Scholar 

  • Cox F, Barsoum N, Lilleskov EA, Bidartondo M (2010) Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecol Lett 13:1103–1113

    Article  PubMed  Google Scholar 

  • Dickie IA, Schnitzer SA, Reich PB, Hobbie SE (2007) Is oak establishment in old-fields and savanna openings context dependent? J Ecol 95:309–320. doi:10.1111/j.1365-2745.01202x

    Article  Google Scholar 

  • Dighton J, Tuininga AR, Gray DM, Huskins RE, Belton T (2004) Impacts of atmospheric deposition on New Jersey pine barrens forest soils and communities of ectomycorrhizal. For Ecol Manage 201:131–144

    Article  Google Scholar 

  • Dirnböck T, Grandin U, Bernhardt-Römermann M, Beudert B, Canullo R, Forsius M, Grabner M-T, Holmberg M, Kleemola S, Lundin L, Mirtl M, Neumann M, Pompei E, Salemaa M, Starlinger F, Staszewski T, Uziębło AK (2014) Forest floor vegetation response to nitrogen deposition in Europe. Glob Change Biol 20:429–440. doi:10.1111/gcb.12440

    Article  Google Scholar 

  • Downs MR, Nadelhoffer KJ, Melillo JM, Aber JD (1993) Foliar and fine root nitrate reductase activity in seedlings of four forest tree species in relation to nitrogen availability. Trees Struct Funct 7:233–236

    Article  Google Scholar 

  • Edwards IP, Cripliver JL, Gillespie AR, Johnsen KH, Scholler M, Turco RF (2004) Nitrogen availability alters macrofungal basidiomycete community structure in optimally fertilized loblolly pine forests. New Phytol 162:755–770

    Article  Google Scholar 

  • Elvir JA, Wiersma GB, White A, Fernandez I (2003) Effects of chronic ammonium sulfate treatment on basal area increment in red spruce and sugar maple at the Bear Brook watershed in Maine. Can J For Res 33:862–869

    Article  CAS  Google Scholar 

  • Elvir JA, Wiersma GB, Day ME, Greenwood MS, Fernandez IJ (2006) Effects of enhanced nitrogen deposition on foliar chemistry and physiological processes of forest trees at the Bear Brook Watershed in Maine. For Ecol Manage 221:207–214

    Article  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

    Article  Google Scholar 

  • Falxa-Raymond N, Patterson AE, Schuster WS, Griffin KL (2012) Oak loss increases foliar nitrogen, δ15 N and growth rates of Betula lentain in a northern temperate deciduous forest. Tree Physiol 32:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Fei S, Steiner KC (2008) Relationships between advance oak regeneration and biotic and abiotic factors. Tree Physiol 28:1111–1119

    Article  PubMed  Google Scholar 

  • Ferretti M, Marchetto A, Arisci S, Bussotti F, Calderisi M, Carnicelli S, Cecchini G, Fabbio G, Bertini G, Matteucci G, Cinti B, Salvati L, Pompei E (2014) On the tracks of nitrogen deposition effects on temperate forests at their southern European range—an observational study from Italy. Glob Change Biol. doi:10.1111/gcb.12552

    Google Scholar 

  • Field C, Mooney HA (1986) The photosynthesis-nitrogen relationship in wild plants. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, New York, pp 25–54

    Google Scholar 

  • Francis R, Read DJ (1994) The contributions of mycorrhizal fungi to the determination of plant community structure. Plant Soil 159:11–25

    Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby J (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. doi:10.1007/s10533-004-0370-0

    Article  CAS  Google Scholar 

  • Gilliam FS (2006) Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J Ecol 94:1176–1191. doi:10.1111/j.1365-2745.2006.01155.x

    Article  CAS  Google Scholar 

  • Gilliam FS (2007) The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 57:845–858

    Article  Google Scholar 

  • Gilliam FS, Yurish BM, Adams MB (2001) Temporal and spatial variation of nitrogen transformations in nitrogen saturated soils of a Central Appalachian hardwood forest. Can J For 31:1768–1785

    CAS  Google Scholar 

  • Gutschick VP, Kay LE (1995) Nutrient-limited growth rates: quantitative benefits of stress responses and some aspects of regulation. J Exp Bot 46:995–1009

    Article  CAS  Google Scholar 

  • Holland E, Braswell B, Sulzman J, Lamarque JF (2005) Nitrogen deposition onto the United States and Western Europe: synthesis of observations and models. Ecol Appl 15:38–57

    Article  Google Scholar 

  • Isbell F, Tilman D, Polasky S, Binder S, Hawthorne P (2013) Low biodiversity state persists two decades after cessation of nutrient enrichment. Ecol Lett 16:454–460

    Article  PubMed  Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    Article  CAS  PubMed  Google Scholar 

  • Jonsson L, Anders D, Tor-Erik B (2000) Spatiotemporal distribution of an ectomycorrhizal community in an oligotrophic Swedish Picea abies forest subjected to experimental nitrogen addition: above- and below-ground views. For Ecol Manage 132:143–156

    Article  Google Scholar 

  • Jonsson LM, Nilsson MC, Wardle DA, Zackrisson O (2001) Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93:353–364

    Article  Google Scholar 

  • Karen O, Hogberg N, Dahlberg A, Jonsson L, Nylund JE (1997) Inter- and intraspecific variation in the ITS region of rDNA of ectomycorrhizal fungi in Fennoscandia as detected by endonuclease analysis. New Phytol 136:313–325

    Article  CAS  Google Scholar 

  • Klironomos JN, Zobel M, Tibbett M, Stock WD, Rillig MC, Parrent JL, Moora M, Kock AM, Facelli JM, Dickie IA, Bever JD (2011) Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytol 189:366–370

    Article  PubMed  Google Scholar 

  • Loftis DL, McGee CE, ed. (1993) Oak regeneration: serious problems, practical recommendations; symposium proceedings, Knoxville, Tennessee, September 1992. General technical report SE-84. USDA Forest Service, Southeastern Forest Experiment Station

  • Lorimer CG (1993) Causes of the oak regeneration problem. USDA For Serv Gen Tech Report SE SE–84

  • Lovett GM, Mitchell MJ (2004) Sugar maple and nitrogen cycling in the forests of eastern North America. Front Ecol Environ 2:81–88. doi:10.2307/3868214

    Article  Google Scholar 

  • Lovett GM, Rueth H (1999) Soil nitrogen transformations in beech and maple stands along a nitrogen deposition gradient. Ecol Appl 9:1330–1344. doi:10.2307/2641400

    Article  Google Scholar 

  • Lovett GM, Weathers KC, Sobczak W (2000) Nitrogen saturation and retention in forested watersheds of the Catskill Mountains, New York. Ecol Appl 10:73–84

    Article  Google Scholar 

  • Magill AH, Aber JD, Hendricks JJ, Bowden RD, Melillo JM, Steudler PA (1997) Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecol Appl 7:402–415

    Article  Google Scholar 

  • Matson P, Lohse KA, Hall SJ (2002) The globalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio 31:113–119. doi:10.1639/0044-7447(2002)031[0113:tgondc]2.0.co;2

  • McNeil BE, Martel RE, Read JM (2006) GIS and biogeochemical models for examining the legacy of forest disturbance in the Adirondack Park, NY, USA. Ecol Model 195:281–295

    Article  Google Scholar 

  • McNulty SG, Aber JD, Newman SD (1996) Nitrogen saturation in a high elevation New England spruce-fir stand. For Ecol Manage 84:109–121

    Article  Google Scholar 

  • Mendivelso HA, Camarero JJ, Obregon OR, Guitierrez E, Toledo M (2013) Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest. PLoS One 8(10):e73855. doi:10.1371/journal.pone.073855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Newingham BA, Callaway RM, BassiriRad H (2007) Allocating nitrogen away from a herbivore: a novel compensatory response to root herbivory. Oecologia 153:913–920. doi:10.1007/s00442-007-0791-2

    Article  PubMed  Google Scholar 

  • Norby RJ (1998) Nitrogen deposition: a component of global change analyses. New Phytol 139:189–200

  • Patterson SL, Zak DR, Burton AJ, Talhelm AF, Pregitzer KS (2012) Simulated N deposition negatively impacts sugar maple regeneration in a northern hardwood ecosystem. J Appl Ecol 49:155–163. doi:10.1111/j.1365-2664.2011.02090.x

    Article  CAS  Google Scholar 

  • Phillips RP, Brzostek E, Midgley MG (2013) The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol 199:41–51

    Article  CAS  PubMed  Google Scholar 

  • Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol 27:595–607

    Article  CAS  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Article  Google Scholar 

  • Reynolds HL, D’Antonio C (1996) The ecological significance of plasticity in root weight ratio in response to nitrogen: opinion. Plant Soil 185:75–97

    Article  CAS  Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Schulze ED, De Vries W, Hauhs M, Rosen K, Rasmussen L, Tamm CO, Nilsson J (1989) Critical loads for nitrogen deposition on forest ecosystems. Water Air Soil Pollut 48(3–4):451–456

    Article  CAS  Google Scholar 

  • Southon GE, Field C, Caporn SJM, Britton AJ, Power SA (2013) Nitrogen deposition reduces plant diversity and alters ecosystem functioning: field-scale evidence from a nationwide survey of UK heathlands. PLoS One 8(4):e59031. doi:10.1371/journal.pone.0059031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stanturf JA, Stone EL Jr, McKittrick RC (1989) Effects of added nitrogen on growth of hardwood trees in southern New York. Can J For Res 19:279–284

    Article  Google Scholar 

  • Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879

    Article  CAS  PubMed  Google Scholar 

  • Stevens CJ, Dise NB, Gowing DJG, Mountford JO (2006) Loss of forb diversity in relation to nitrogen deposition in the UK: regional trends and potential controls. Glob Change Biol 12:1823–1833. doi:10.1111/j.1365-2486.2006.01217.x

    Article  Google Scholar 

  • Stevens C, Duprè C, Gaudnik C, Dorland E, Dise N, Gowing D, Bleeker A, Alard D, Bobbink R, Fowler D, Vandvik V, Corcket E, Mountford JO, Aarrestad PA, Muller S, Diekmann M (2011) Changes in species composition of European acid grasslands observed along a gradient of nitrogen deposition. J Veg Sci 22:207–215. doi:10.1111/j.1654-1103.2010.01254.x

    Article  Google Scholar 

  • Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci USA 102:4387–4392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Talhelm AF, Burton AJ, Pregitzer KS, Campione MA (2013) Chronic nitrogen deposition reduces the abundance of dominant forest understory and groundcover species. For Ecol Manage 293:39–48

    Article  Google Scholar 

  • Templer PH, Dawson TE (2004) Nitrogen uptake by four tree species of the Catskill mountains, New York: implications for forest N dynamics. Plant Soil 262:251–261. doi:10.1023/b:plso.0000037047.16616.98

    Article  CAS  Google Scholar 

  • Thomas FM, Hilker C (2000) Nitrate reduction in leaves and roots of young pedunculate oaks (Quercus robur) growing on different nitrate concentrations. Environ Exp Bot 43:19–32. doi:10.1016/s0098-8472(99)00040-4

    Article  CAS  Google Scholar 

  • Thomas FM, Blank R, Hartmann G (2002) Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. For Pathol 32:277–307. doi:10.1046/j.1439-0329.2002.00291.x

    Article  Google Scholar 

  • Thomas RQ, Canham CD, Weathers KC, Goodale CL (2010) Increased tree carbon storage in response to nitrogen deposition in the US. Nat Geosci 3:13–17. doi:10.1038/ngeo721

    Article  Google Scholar 

  • Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton

    Google Scholar 

  • Truax B, Gagnon D, Chevrier N (1994) Nitrate reductase activity in relation to growth and soil N-forms in red oak and red ash planted in 3 different environments-forest, clear-cut and field. For Ecol Manage 64:71–82. doi:10.1016/0378-1127(94)90128-7

    Article  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:72–75

    Article  Google Scholar 

  • van der Heijden MG, Bardgett RD, van Straalen NM (2008a) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310

    Article  PubMed  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008b) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Vitousek PM, Aber J, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Wallace ZP, Lovett GM, Hart JE, Machona B (2007) Effects of nitrogen saturation on tree growth and death in a mixed-oak forest. For Ecol Manage 243:210–218. doi:10.1016/j.foreco.2007.02.015

    Article  Google Scholar 

  • Zaccherio MT, Finzi AC (2007) Atmospheric deposition may affect northern hardwood forest composition by altering soil nutrient supply. Ecol Appl 17:1929–1941

    Article  PubMed  Google Scholar 

  • Zerihun A, Bassirirad H (2001) Interspecies variation in nitrogen uptake kinetic responses of temperate forest species to elevated CO2: potential causes and consequences. Glob Chang Biol 7:211–222

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. Jorgensen, W. Gaswick, P. Orland, P. Patel, and J. Zayner who were instrumental in transplanting, harvesting, processing and data analyses. We also thank B. Tsang and S. Harrison for their editorial comments on an earlier version of the manuscript. M. Bowles and R. Fahey of the Morton Arboretum have intimate knowledge of the community ecology dynamics of oak and maples in these regionally important forests. We benefited immensely from their insights and feedbacks on various aspects of this project. Valuable comments from J. Lichstein and two anonymous reviewers helped improved various aspects of this manuscript. Support for this work was provided by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hormoz BassiriRad.

Additional information

Communicated by Jeremy Lichstein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BassiriRad, H., Lussenhop, J.F., Sehtiya, H.L. et al. Nitrogen deposition potentially contributes to oak regeneration failure in the Midwestern temperate forests of the USA. Oecologia 177, 53–63 (2015). https://doi.org/10.1007/s00442-014-3119-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3119-z

Keywords

Navigation