Skip to main content
Log in

Physiological pace of life: the link between constitutive immunity, developmental period, and metabolic rate in European birds

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Constitutive innate immunity is the first lined of defence against infections, but the causes determining its variability among species are poorly understood. The pace of life hypothesis predicts that species with a fast speed of life, characterized by high energy turnover and short developmental time, invest relatively little in defence in favour of growth and early reproduction, whereas ‘slow-living’ species are predicted to invest more resources into costly defence. We conducted phylogenetic comparative analysis on 105 European bird species and determined that the number of leukocytes, and the levels of natural antibodies (NAbs) and complement, measured on adult birds, increased or tended to positively correlate with the length of incubation period. However, we found that the length of incubation and fledging periods have opposite effects on immune defence (i.e. immune parameters show a negative association with the length of fledging period). Our results suggest that the contrasting effects of the incubation and fledging periods are related to the timing of the development of immune cells and of NAbs and complement, which largely mature during the embryonic phase of development. In support of this hypothesis, we found that species with a long relative incubation period [i.e. whose total pre-fledging developmental time (incubation plus fledging) consists largely of the incubation period] invested more in constitutive innate immunity. Finally, in support of the pace of life hypothesis, for a subsample of 63 species, we found that the basal metabolic rate significantly or tended to negatively correlate with immune measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Addison B, Klasing KC, Robinson WD, Austin SH, Ricklefs RE (2009) Ecological and life-history factors influencing the evolution of maternal antibody allocation: a phylogenetic comparison. Proc R Soc Lond B 276:3979–3987

    Article  CAS  Google Scholar 

  • Apanius V (1998) The immune system. In: Starck JM, Ricklefs RE (eds) Avian growth and development. Evolution within the altricial-precocial spectrum. Oxford University Press, Oxford, pp 203–221

    Google Scholar 

  • Arriero E, Majewska A, Martin TE (2013) Ontogeny of constitutive immunity: maternal vs. endogenous influences. Funct Ecol 27:472–478

    Article  Google Scholar 

  • Avrameas S (1991) Natural autoantibodies—from horror autotoxicus to gnothiseauton. Immunol Today 12:154–159

    CAS  PubMed  Google Scholar 

  • Bennett PM, Owens IPF (2002) Evolutionary ecology of birds: life histories, mating systems and extinction. Oxford University Press, Oxford

    Google Scholar 

  • Blount JD, Houston DC, Møller AP, Wrigth J (2003) Do individual branches of immune defence correlate? A comparative case study of scavenging and non-scavenging birds. Oikos 102:340–350

    Article  Google Scholar 

  • Boes M (2000) Role of natural and immune IgM antibodies in immune responses. Mol Immunol 37:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Bókony V, Lendvai ÁZ, Liker A, Angelier F, Wingfield JC, Chastel O (2009) Stress response and the value of reproduction: are birds prudent parents? Am Nat 173:589–598

    Article  PubMed  Google Scholar 

  • Boughton RK, Joop G, Armitage AO (2011) Outdoor immunology: methodological considerations for ecologists. Funct Ecol 25:81–100

    Article  Google Scholar 

  • Bourgeon S, Kauffmann M, Geiger S, Raclot T, Robin JP (2010) Relationships between metabolic status, corticosterone secretion and maintenance of innate and adaptive humoral immunities in fasted re-fed mallards. J Exp Biol 213:3810–3818

    Article  CAS  PubMed  Google Scholar 

  • Cohen AA, McGraw KJ, Robinson TR, Wiersma P, Williams JB, Brawn JD, Ricklefs RE (2008) Interspecific associations between circulating antioxidant levels and life-history variation in birds. Am Nat 172:178–193

    Article  PubMed  Google Scholar 

  • Conway CJ, Martin TE (2000) Evolution of passerine incubation behaviour: influence of food, temperature, and nest predation. Evolution 54:670–685

    Article  CAS  PubMed  Google Scholar 

  • Cramp S, Perrins CM (eds) (1977–1994). The birds of the Western Palearctic, vol 1–9. Oxford University Press, Oxford

  • Davison F, Kaspers B, Schat KA (eds) (2008) Avian immunology. Academic Press, London

    Google Scholar 

  • Demas GE, Zysling DA, Beechler BR, Muehlenbein MP, French SS (2011) Beyond phytohaemagglutinin: assessing vertebrate immune function across ecological contexts. J Anim Ecol 80:710–730

    Article  PubMed  Google Scholar 

  • Dunning JB Jr (2008) CRC handbook of avian body masses, 2nd edn. CRC, USA

    Google Scholar 

  • Edwards DB (2012) Immune investment is explained by sexual selection and pace-of-life, but not longevity in parrots (Psittaciformes). PLoS ONE 7:e53066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Figuerola J, Green AJ (2000) Haematozoan parasites and migratory behaviour in waterfowl. Evol Ecol 14:143–153

    Article  Google Scholar 

  • Gamer M, Lemon J, Fellows I, Sing P (2012) irr: various coefficients of interrater reliability and agreement. R package version 0.84. http://CRAN.R-project.org/package=irr

  • Garamszegi LZ, Møller AP (2007) Prevalence of avian influenza and host ecology. Proc R Soc Lond B 274:2003–2012

    Article  Google Scholar 

  • Garamszegi LZ, Møller AP (2010) Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review. Biol Rev 85:797–805

    PubMed  Google Scholar 

  • Garamszegi LZ, Møller AP (2011) Non-random variation in within-species sample size and missing data in phylogenetic comparative studies. Syst Biol 60:876–880

    Article  PubMed  Google Scholar 

  • Harmon LJ, Losos JB (2005) The effect of intraspecific sample size on type I and type II error rates in comparative studies. Evolution 59:2705–2710

    Article  PubMed  Google Scholar 

  • Hau M, Ricklefs RE, Wikelski M, Lee KA, Brawn JD (2010) Corticosterone, testosterone and life-history strategies of birds. Proc R Soc Lond B 267:3203–3212

    Article  Google Scholar 

  • Hõrak P, Ots I, Murumägi A (1998) Haematological health state indices of reproducing great tits: a response to brood size manipulation. Funct Ecol 12:750–756

    Article  Google Scholar 

  • Horrocks NPC, Hegemann A, Matson KD, Hine K, Jaquier S, Shobrak M, Williams JB, Tinbergen JM, Tieleman BI (2012) Immune indexes of larks from desert and temperate regions show weak associations with life history but stronger links to environmental variation in microbial abundance. Physiol Biochem Zool 85:504–515

    Article  PubMed  Google Scholar 

  • Johnson PTJ, Rohr JR, Hoverman JT, Kellermanns E, Bowerman J, Lunde KB (2012) Living fast and dying of infection: host life history drives interspecific variation in infection and disease risk. Ecol Lett 15:235–242

    Article  PubMed  Google Scholar 

  • Klasing KC, Leshchinsky TV (1999) Functions, costs, and benefits of the immune system during development and growth. In: Adams NJ, Slotow RH (eds) Proceedings of the 22nd International Ornithological Congress, Johannesburg. BirdLife, South Africa, pp 2817–2835

    Google Scholar 

  • Knowles SCL, Nakagawa S, Sheldon BC (2009) Elevated reproductive effort increases blood parasitaemia and decreases immune function in birds: a meta-regression approach. Funct Ecol 23:405–415

    Article  Google Scholar 

  • Kuris AM, Blaustein AR, Alió JJ (1980) Hosts as islands. Am Nat 116:570–586

    Article  Google Scholar 

  • Lee KA (2006) Linking immune defenses and life history at the levels of the individual and the species. Integr Comp Biol 46:1000–1015

    Article  CAS  PubMed  Google Scholar 

  • Lee KA, Wikelski M, Robinson WD, Robinson TR, Klasing KC (2008) Constitutive immune defences correlate with life-history variables in tropical birds. J Anim Ecol 77:356–363

    Article  CAS  PubMed  Google Scholar 

  • Martin TE, Møller AP, Merino S, Clobert J (2001) Does clutch size evolve in response to parasites and immunocompetence? Proc Natl Acad Sci USA 98:2071–2076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin LB II, Weil ZM, Nelson RJ (2007) Immune defense and reproductive pace of life in Peromyscus mice. Ecology 88:2516–2528

    Article  PubMed  Google Scholar 

  • Martin TE, Arriero E, Majewska A (2011) A trade-off between embryonic development rate and immune function of avian offspring is revealed by considering embryonic temperature. Biol Lett 7:425–428

    Article  PubMed Central  PubMed  Google Scholar 

  • Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667

    Article  Google Scholar 

  • Matson KD (2006) Are there differences in immune function between continental and insular birds? Proc R Soc Lond B 273:2267–2274

    Article  CAS  Google Scholar 

  • Matson KD, Ricklefs RE, Klasing KC (2005) A hemolysis-hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Dev Comp Immunol 29:275–286

    Article  CAS  PubMed  Google Scholar 

  • Mauck RA, Matson KD, Philipsborn J, Ricklefs RE (2005) Increase in the constitutive innate humoral immune system in Leach’s storm-petrel (Oceanodroma leucorhoa) chicks. Funct Ecol 19:1001–1007

    Article  Google Scholar 

  • McNab BN (2009) Ecological factors affect the level and scaling of avian BMR. Comp Biochem Physiol A 152:22–45

    Article  Google Scholar 

  • Møller AP, Erritzøe J (1996) Parasite virulence and host immune defense: host immune response is related to nest reuse in birds. Evolution 50:2066–2072

    Article  Google Scholar 

  • Monaghan P, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol Lett 12:75–92

    Article  PubMed  Google Scholar 

  • Nunn CL (2002) A comparative study of leukocyte counts and disease risk in primates. Evolution 56:177–190

    Article  PubMed  Google Scholar 

  • Nunn CL, Gittleman JL, Antonovics J (2003) A comparative study of white blood cell counts and disease risk in carnivores. Proc R Soc Lond B 270:347–356

    Article  Google Scholar 

  • Orme D (2011) The caper package: comparative analysis of phylogenetics and evolution in R. http://cran.r-project.org/web/packages/caper/vignettes/caper.pdf

  • Pagel M (1997) Inferring evolutionary processes from phylogenies. Zool Scr 26:331–348

    Article  Google Scholar 

  • Pagel M (1999) The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst Biol 48:612–622

    Article  Google Scholar 

  • Palacios MG, Martin TE (2006) Incubation period and immune function: a comparative field study among coexisting birds. Oecologia 146:505–512

    Article  PubMed  Google Scholar 

  • Palacios MG, Sparkman AM, Bronikowski AM (2011) Developmental plasticity of immune defence in two life-history ecotypes of the garter snake, Thamnophis elegans—a common-environment experiment. J Anim Ecol 80:431–437

    Article  PubMed  Google Scholar 

  • Pap PL, Vágási CI, Czirják GÁ, Barta Z (2008) Diet quality affects postnuptial molting and feather quality of the house sparrow (Passer domesticus): interaction with humoral immune function? Can J Zool 86:834–842

    Article  Google Scholar 

  • Pap PL, Vágási CI, Czirják GÁ, Titilincu A, Pintea A, Osváth G, Fülöp A, Barta Z (2011) The effect of coccidians on the condition and immune profile of molting house sparrows (Passer domesticus). Auk 128:330–339

    Article  Google Scholar 

  • Pap PL, Sesarman A, Vágási CI, Buehler DM, Pătraş L, Versteegh MA, Banciu M (2014) No evidence for parasitism-linked changes in immune function or oxidative physiology over the annual cycle of an avian species. Physiol Biochem Zool 87:729–739

    PubMed  Google Scholar 

  • Pontzer H, Raichlen DA, Gordon AD, Schroepfer-Walker KK, Hare B, O’Neill MC, Muldoon KM, Dunsworth HM, Wood BM, Isler K, Burkart J, Irwin M, Shumaker RW, Lonsdorf EV, Ross SR (2014) Primate energy expenditure and life history. Proc Natl Acad Sci USA 111:1433–1437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Previtali AM, Ostfeld RS, Keesing F, Jolles AE, Hanselmann R, Martin LB (2012) Relationship between pace of life and immune responses in wild rodents. Oikos 121:1483–1492

    Article  Google Scholar 

  • R Core Team (2014). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL: http://www.R-project.org/

  • Remeš V, Martin TE (2002) Environmental influences on the evolution of growth and developmental rates in passerines. Evolution 56:2505–2518

    Article  PubMed  Google Scholar 

  • Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Article  Google Scholar 

  • Ricklefs RE (1992) Embryonic development period and the prevalence of avian blood parasites. Proc Natl Acad Sci USA 89:4722–4725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ricklefs RE, Wikelski M (2002) The physiology/life history nexus. Trends Ecol Evol 17:462–468

    Article  Google Scholar 

  • Schneeberger K, Czirják GÁ, Voigt CC (2013) Measures of the constitutive immune system are linked to diet and roosting habits of Neotropical bats. PLoS ONE 8:e54023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Semple S, Cowlishaw G, Bennett PM (2002) Immune system evolution among anthropoid primates: parasites, injuries and predators. Proc R Soc Lond B 269:1031–1037

    Article  Google Scholar 

  • Seto F, Henderson WG (1968) Natural and immune hemagglutinin forming capacity of immature chickens. J Exp Zool 169:501–512

    Article  CAS  PubMed  Google Scholar 

  • Sibly RM, Witt CC, Wright NA, Venditti C, Jetz W, Brown JH (2012) Energetics, lifestyle, and reproduction in birds. Proc Natl Acad Sci USA 109:10937–10941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Šimková A, Lafond T, Ondračková M, Jurajda P, Ottová E, Morand S (2008) Parasitism, life history traits and immune defence in cyprinid fish from Central Europe. BMC Evol Biol 8:29

    Article  PubMed Central  PubMed  Google Scholar 

  • Sparkman AM, Palacios MG (2009) A test of life-history theories of immune defence in two ecotypes of the garter snake, Thamnophis elegans. J Anim Ecol 78:1242–1248

    Article  PubMed  Google Scholar 

  • Tella JL, Blanco G, Forero MG, Gajón A, Donázar JA, Hiraldo F (1999) Habitat, world geographic range, and embryonic development of hosts explain the prevalence of avian hematozoa at small spatial and phylogenetic scales. Proc Natl Acad Sci USA 96:1785–1789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tella JL, Scheuerlein A, Ricklefs RE (2002) Is cell-mediated immunity related to the evolution of life-history strategies in birds? Proc R Soc Lond B 269:1059–1066

    Article  Google Scholar 

  • Tella JL, Figuerola J, Negro JJ, Blanco G, Rodríguez-Estrella R, Forero MG, Blázquez MC, Green AJ, Hiraldo F (2004) Ecological, morphological and phylogenetic correlates of interspecific variation in plasma carotenoid concentration in birds. J Evol Biol 17:156–164

    Article  CAS  PubMed  Google Scholar 

  • Thornton BP, Vetvicka V, Ross GD (1994) Natural antibody and complement-mediated antigen processing and presentation by B lymphocytes. J Immunol 152:1727–1737

    CAS  PubMed  Google Scholar 

  • Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo MB (2011) Consequences of climate change on the tree of life in Europe. Nature 470:531–534

    Article  CAS  PubMed  Google Scholar 

  • Tieleman BI, Williams JB, Ricklefs RE, Klasing KC (2005) Constitutive innate immunity is a component of the pace-of-life syndrome in tropical birds. Proc R Soc Lond B 272:1715–1720

    Article  Google Scholar 

  • Végvári Z, Bókony V, Barta Z, Kovács G (2009) Life history predicts advancement of avian spring migration in response to climate change. Global Change Biol 16:1–11

    Article  Google Scholar 

  • Waldenström J, Bensch S, Kiboi S, Hasselquist D, Ottosson U (2002) Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Ecol 11:1545–1554

    Article  PubMed  Google Scholar 

  • Weill JC, Reynaud CA (1987) The chicken B-cell compartment. Science 238:1094–1098

    Article  CAS  PubMed  Google Scholar 

  • Wiersma P, Muňoz-Garcia A, Walker A, Williams JB (2007) Tropical birds have a slow pace of life. Proc Natl Acad Sci USA 104:9340–9345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

During fieldwork, we enjoyed the faithful help accorded by Z. Benkő, T. Rácz, A. Fülöp, S. Daróczi, A. Stermin, A. Marton, L. Bărbos, K. Sándor, I. Kovács, T. Miholcsa, E. Szöllősi, A. Fenesi and E. Ruprecht. We thank the administration of the Botanical Garden of Cluj Napoca for permission to capture birds. We are grateful to J. Tökölyi and L. Z. Garamszegi who kindly helped us with the statistical analyses and data collection, and to A. Liker, T. Székely and G. Sorci for their constructive comments on an earlier version of the manuscript. L. Eberhart-Phillips kindly helped us with correcting the English. The comments given by three reviewers on a previous version of the manuscript greatly improved the quality of this study. This work was carried out with permission from the Romanian Academy of Sciences and adhered to recommended practices for the ringing, measuring and sampling of wild birds for research purposes. The research of P. L. P. was supported by TÁMOP-4.2.4.A/2-11/1-2012-0001 National Excellence Program, and C. I. V. was supported by TÁMOP-4.2.2/B-10/1-2010-0024. These projects were sponsored by the European Union and the State of Hungary, and co-financed by the European Social Fund. The research infrastructure was supported by a research grant (PN II. RU TE 291/2010) of the Romanian Ministry of Education and Research. C. I. V. is financed by a post-doctoral grant (GTC 34062/2013) of the Babeş-Bolyai University. G. Á. C. was supported by the Leibniz Institute for Zoo and Wildlife Research Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter László Pap.

Additional information

Communicated by Pawel Koteja.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pap, P.L., Vágási, C.I., Vincze, O. et al. Physiological pace of life: the link between constitutive immunity, developmental period, and metabolic rate in European birds. Oecologia 177, 147–158 (2015). https://doi.org/10.1007/s00442-014-3108-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3108-2

Keywords

Navigation