Skip to main content
Log in

Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature, and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87 % of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75 % of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was dependent on light and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions, which explicitly accounts for the physico-chemical properties of emitted compounds, we were able to simulate these observed stomatal effects, whether induced experimentally or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light-dependent monoterpenes comprise a significant fraction of emissions in ponderosa pine. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in Δ-3-carene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amin H, Atkins PT, Russo RS, Brown AW, Sive B, Hallar AG, Huff Hartz KE (2012) Effect of bark beetle infestation on secondary organic aerosol precursor emissions. Environ Sci Technol 46:5696–5703

    Article  CAS  PubMed  Google Scholar 

  • Arimura G, Matsui K, Takabayashi J (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: Proximate factors and their ultimate functions. Plant Cell Physiol 50:911–923

    Article  CAS  PubMed  Google Scholar 

  • Arnts RR (2008) Reduction of biogenic BVOC sampling losses from ozone via trans-2-butene addition. Environ Sci Technol 42:7663–7669

    Article  CAS  PubMed  Google Scholar 

  • Bouvier-Brown NC, Holzinger R, Palitzsch K, Goldstein AH (2009a) Large emissions of sesquiterpenes and methyl chavicol quantified from branch enclosure measurements. Atmos Environ 43:389–401

    Article  CAS  Google Scholar 

  • Bouvier-Brown NC, Goldstein AH, Gilman JB, Custer WC, de Gouw JA (2009b) In-situ ambient quantification of monoterpenes, sesquiterpenes, and related oxygenated compounds during BEARPEX 2007: implications for gas- and particle-phase chemistry. Atmos Chem Phys 9:5505–5518

    Article  CAS  Google Scholar 

  • Ciccioli P, Brancaleoni E, Frattoni M, Di Palo V, Valentini R, Giampero T, Seufert G, Bertin N, Hansen U, Csiky O, Lenz R, Sharma M (1999) Emission of reactive terpene compounds from orange orchards and their removal by within-canopy processes. J Geophys Res 104:8077–8094

    Article  CAS  Google Scholar 

  • de Gouw J, Warneke C (2007) Measurements of volatile organic compounds in the earth’s atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom Rev 26:223–257

    Article  PubMed  Google Scholar 

  • DiGangi JP, Boyle ES, Karl T, Harley P, Turnipseed A, Kim S, Cantrell C, Maudlin RL III, Zheng W, Flocke F, Hall SR, Ullmann K, Nakashima Y, Paul JB, Wolfe GM, Desai AR, Kajii Y, Guenther A, Keutsch FN (2011) First direct measurements of formaldehyde flux via eddy covariance: implications for missing in-canopy formaldehyde sources. Atmos Chem Phys 11:10565–10578

    Article  CAS  Google Scholar 

  • Eller ASD, Harley P, Monson RK (2013) Potential contribution of exposed resin to ecosystem emissions of monoterpenes. Atmos Environ 77:440–444

    Article  CAS  Google Scholar 

  • Fall R, Monson RK (1992) Isoprene emission rate and intercellular isoprene concentration as influenced by stomatal distribution and conductance. Plant Physiol 100:987–992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geron CD, Guenther AB, Pierce TE (1994) An improved model for estimating volatile organic compound emissions from forests in the eastern United States. J Geophys Res 99:12773–12791

    Article  CAS  Google Scholar 

  • Ghirardo A, Koch L, Taipale R, Zimmer I, Schnitzler J-P, Rinne J (2010) Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO2 labelling and PTR–MS analysis. Plant, Cell Environ 33:781–792

    CAS  Google Scholar 

  • Gray DW, Breneman SR, Topper LA, Sharkey TD (2011) Biochemical characterization and homology modeling of methylbutenol synthase and implications for understanding hemiterpene synthase evolution in plants. J Biol Chem 286:20582–20590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greenberg JP, Asensio D, Turnipseed A, Guenther AB, Karl T, Gochis D (2012) Contribution of leaf and needle litter to whole ecosystem BVOC fluxes. Atmos Environ 59:302–311

    Article  CAS  Google Scholar 

  • Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R (1993) Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses. J Geophys Res 98:12609–12617

    Article  Google Scholar 

  • Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012) The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5:1471–1492

    Article  Google Scholar 

  • Harley PC (2013) The roles of stomatal conductance and compound volatility in controlling the emission of volatile organic compounds from leaves. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions. Springer, Berlin, pp 181–208

    Chapter  Google Scholar 

  • Harley P, Fridd-Stroud V, Greenberg J, Guenther A, Vasconcellos P (1998) Emission of 2-methyl-3-buten-2-ol by pines: A potentially large natural source of reactive carbon to the atmosphere. J Geophys Res 103:25479–25486

    Article  CAS  Google Scholar 

  • Heijari J, Blande JD, Holopainen JK (2011) Feeding of large pine weevil on Scots pine stem triggers localised bark and systemic shoot emission of volatile organic compounds. Environ Exp Bot 71:390–398

    Google Scholar 

  • Karl T, Fall R, Rosenstiel TN, Prazeller P, Larsen B, Seufert G, Lindinger W (2002) On-line analysis of the 13CO2 labeling of leaf isoprene suggests multiple subcellular origins of isoprene precursors. Plant 215:894–905

    Article  CAS  Google Scholar 

  • Karl T, Hansel A, Cappellin L, Kaser L, Herdlinger-Blatt I, Jud W (2012) Selective measurements of isoprene and 2-methyl-3-buten-2-ol based on NO+ ionization mass spectrometry. Atmos Chem Phys 12:11877–11884

    Article  CAS  Google Scholar 

  • Kaser L, Karl T, Guenther A, Graus M, Schnitzhofer R, Turnipseed A, Fischer L, Harley P, Madronich M, Gochis D, Keutsch FN, Hansel A (2013a) Undisturbed and disturbed above-canopy ponderosa pine emissions: PTR–TOF–MS measurements and MEGAN 2.1 model results. Atmos Chem Phys 13:11935–11947

    Article  CAS  Google Scholar 

  • Kaser L, Karl T, Schnitzhofer R, Graus M, Herdlinger-Blatt IS, DiGangi JP, Sive B, Turnipseed A, Hornbrook RS, Zheng W, Flocke FM, Guenther A, Keutsch FN, Apel E, Hansel A (2013b) Comparison of different real time BVOC measurement techniques in a ponderosa pine forest. Atmos Chem Phys 13:2893–2906

    Article  Google Scholar 

  • Kim S, Karl T, Guenther A, Tyndall G, Orlando J, Harley P, Rasmussen R, Apel E (2010) Emissions and ambient distributions of Biogenic Volatile Organic Compounds (BVOC) in a ponderosa pine ecosystem: interpretation of PTR–MS mass spectra. Atmos Chem Phys 10:1759–1771

    Article  CAS  Google Scholar 

  • Loreto F, Ciccioli P, Cecinato A, Brancaleoni E, Frattoni M, Tricoli D (1996) Influence of environmental factors and air composition on the emission of α-pinene from Quercus ilex leaves. Plant Physiol 110:267–275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin MJ, Stirling CM, Humphries SW, Long SP (2000) A process-based model to predict the effects of climatic change on leaf isoprene emission rates. Ecol. Modell. 131:161–174

    Article  CAS  Google Scholar 

  • Monson RK, Fall R (1989) Isoprene emission from aspen leaves: Influence of environment and relation to photosynthesis and respiration. Plant Physiol 90:267–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niinemets Ü, Reichstein M (2003a) Controls on the emission of plant volatiles through stomata: Differential sensitivity of the emission rates to stomatal closure explained. J Geophys Res 108:4208. doi:10.1029/2002JD002620

    Article  Google Scholar 

  • Niinemets Ü, Reichstein M (2003b) Controls on the emission of plant volatiles through stomata: a sensitivity analysis. J Geophys Res 108:4211. doi:10.1029/2002JD002626

    Article  Google Scholar 

  • Niinemets Ü, Reichstein M, Staudt M, Seufert G, Tenhunen JD (2002) Stomatal constraints may affect emission of oxygenated monoterpenoids from the foliage of Pinus pinea. Plant Physiol 130:1371–1385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niinemets Ü, Kuhn U, Harley PC, Staudt M, Arneth A, Cescatti A, Ciccioli P, Copolovici L, Geron C, Guenther A, Kesselmeier J, Lerdau MT, Monson RK, Peñuelas J (2011) Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols. Biogeosciences 8:2209–2246

    Article  CAS  Google Scholar 

  • Niinemets Ü, Kännaste A, Copolovici L (2013) Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Frontiers Plant Sci. doi:10.3389/fpls.2013.00262

    Google Scholar 

  • Noe SM, Ciccioli P, Brancaleoni E, Loreto F, Niinemets Ü (2006) Emissions of monoterpenes linalool and ocimene respond differently to environmental changes due to differences in physico-chemical characteristics. Atmos Environ 40:4649–4662

    Article  CAS  Google Scholar 

  • Ortega J, Helmig D, Guenther A, Harley P, Pressley S, Vogel C (2007) Flux estimates and OH reaction potential of reactive biogenic volatile organic compounds (BVOC) from a mixed northern hardwood forest. Atmos Environ 41:5479–5495

    Article  CAS  Google Scholar 

  • Ortega J, Turnipseed A, Guenther AB, Karl TG, Day DA, Gochis D, Huffman JA, Prenni AJ, Levin EJT, Kreidensweis SM, DeMott PJ, Tobo Y, Patton EG, Hodzic A, Cui YY, Harley PC, Hornbrook RS, Apel EC, Monson RK, Eller ASD, Greenberg JP, Barth MC, Campuzano-Jost P, Palm BB, Jiminez JL, Aiken AC, Dubey MK, Geron C, Offenberg J, Ryan MG, Fornwalt PJ, Pryor SC, Keutsch FN, DiGangi JP, Chan AWH, Goldstein AH, Wolfe GM, Kim S, Kaser L, Schnitzhofer R, Hansel A, Cantrell CA, Mauldin RL, Smith JN (2014) Overview of the Manitou Experimental Forest Observatory: site description and selected science results for 2008 to 2013. Atmos Chem Phys 14:6345–6367

  • Roskamp M (2013) Characterization of secondary organic aerosol precursors using two-dimensional gas chromatography-time of flight mass spectrometry (GCA x GC-TOFMS). Masters Thesis. Department of Civil and Environmental Engineering. Portland State Univ. http://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=2410&context=open_access_etd

  • Sanadze GA (1991) Isoprene effect—Light-dependent emissions of isoprene by green parts of plants. In: Sharkey TD, Holland EA, Mooney HA (eds) Trace gas emissions by plants. Academic Press, San Diego, pp 135–152

    Chapter  Google Scholar 

  • Schade GW, Goldstein AH (2001) Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation. J Geophys Res 106:3111–3123

    Article  CAS  Google Scholar 

  • Schade GW, Goldstein AH, Gray DW, Lerdau MT (2000) Canopy and leaf level emissions of 2-methyl-3-buten-2-ol from a ponderosa pine plantation. Atmos Environ 34:3535–3544

    Article  CAS  Google Scholar 

  • Schuh G, Heiden AC, Hoffmann T, Kahl J, Rockel P, Rudolph J, Wildt J (1997) Emissions of volatile organic compounds from sunflower and beech: Dependence on temperature and light intensity. J Atmos Chem 27:291–318

    Article  CAS  Google Scholar 

  • Schürmann W, Ziegler H, Kotzias D, Schönwitz R, Steinbrecher R (1993) Emission of biosynthesized monoterpenes from needles of Norway spruce. Naturwissenschaften 80:276–278

    Article  Google Scholar 

  • Smith RH (1977) Monoterpenes of ponderosa pine xylem resin in western United States. USDA Forest Service Tech. Bull. No. 1532, 48 pp

  • Staudt M, Seufert G (1995) Light-dependent emissions of monoterpenes by Holm oak (Quercus ilex, L.). Naturwissenschaften 82:89–92

    Article  CAS  Google Scholar 

  • Taipale R, Kajos MK, Patokoski J, Rantala P, Ruuskanen TM, Rinne J (2011) Role of de novo biosynthesis in ecosystem scale monoterpene emissions from a boreal Scots pine forest. Biogeosciences 8:2247–2255

    Article  CAS  Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • Yokouchi Y, Ambe Y (1984) Factors affecting the emission of monoterpenes from red pine (Pinus densiflora) – Long-term effects of light, temperature and humidity. Plant Physiol 75:1009–1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zimmer W, Bruggemann N, Emeis S, Giersch C, Lehning A, Steinbrecher R, Schnitzler J-P (2000) Process-based modelling of isoprene emission by oak leaves. Plant, Cell Environ 23:585–595

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Center for Atmospheric Research is sponsored by the US National Science Foundation. RKM acknowledges support from NSF Grant 0919189.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Harley.

Additional information

Communicated by Joy K. Ward.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 275 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harley, P., Eller, A., Guenther, A. et al. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance. Oecologia 176, 35–55 (2014). https://doi.org/10.1007/s00442-014-3008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3008-5

Keywords

Navigation