Skip to main content
Log in

Inter-specific territoriality in a Canis hybrid zone: spatial segregation between wolves, coyotes, and hybrids

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Gray wolves (Canis lupus) and coyotes (Canis latrans) generally exhibit intraspecific territoriality manifesting in spatial segregation between adjacent packs. However, previous studies have found a high degree of interspecific spatial overlap between sympatric wolves and coyotes. Eastern wolves (Canis lycaon) are the most common wolf in and around Algonquin Provincial Park (APP), Ontario, Canada and hybridize with sympatric gray wolves and coyotes. We hypothesized that all Canis types (wolves, coyotes, and hybrids) exhibit a high degree of spatial segregation due to greater genetic, morphologic, and ecological similarities between wolves and coyotes in this hybrid system compared with western North American ecosystems. We used global positioning system telemetry and probabilistic measures of spatial overlap to investigate spatial segregation between adjacent Canis packs. Our hypothesis was supported as: (1) the probability of locating wolves, coyotes, and hybrids within home ranges (\(\bar{x}\) = 0.05) or core areas (\(\bar{x}\) < 0.01) of adjacent packs was low; and (2) the amount of shared space use was negligible. Spatial segregation did not vary substantially in relation to genotypes of adjacent packs or local environmental conditions (i.e., harvest regulations or road densities). We provide the first telemetry-based demonstration of spatial segregation between wolves and coyotes, highlighting the novel relationships between Canis types in the Ontario hybrid zone relative to areas where wolves and coyotes are reproductively isolated. Territoriality among Canis may increase the likelihood of eastern wolves joining coyote and hybrid packs, facilitate hybridization, and could play a role in limiting expansion of the genetically distinct APP eastern wolf population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams JA, Lucash C, Schutte L, Waits LP (2007) Locating hybrid individuals in the red wolf (Canis rufus) experimental population area using a targeted sampling strategy and faecal DNA genotyping. Mol Ecol 16:1823–1834

    Article  PubMed  Google Scholar 

  • Arjo WM, Pletscher DH (1999) Behavioral responses of coyotes to wolf recolonization in northwestern Montana. Can J Zool 77:1919–1927

    Google Scholar 

  • Atwood TC, Gese EM (2008) Coyotes and recolonizing wolves: social rank mediates risk-conditional behavior at ungulate carcasses. Anim Behav 75:753–762

    Article  Google Scholar 

  • Atwood TC, Gese EM (2010) Importance of resource selection and social behavior to partitioning of hostile space by sympatric canids. J Mammal 91:490–499

    Article  Google Scholar 

  • Ballard WB, Whitman JS, Gardner GL (1987) Ecology of an exploited wolf population in south-central Alaska. Wildl Monogr 98:1–54

    Google Scholar 

  • Barrette C, Messier F (1980) Scent-marking in free-ranging coyotes, Canis latrans. Anim Behav 28:814–819

    Article  Google Scholar 

  • Begon M, Harper JL, Townsend CR (1996) Ecology: individuals, populations and communities. Blackwell Science, Oxford

    Book  Google Scholar 

  • Bekoff M, Wells MC (1986) Social ecology and behavior of coyotes. Adv Study Behav 16:251–338

    Article  Google Scholar 

  • Benson JF, Patterson BR, Wheeldon TJ (2012) Spatial genetic and morphologic structure of wolves and coyotes in relation to environmental heterogeneity in a Canis hybrid zone. Mol Ecol 21:5934–5954

    Article  PubMed  Google Scholar 

  • Benson JF, Patterson BR, Mahoney PJ (2013) A protected area influences genotype-specific survival and the structure of a Canis hybrid zone.  Ecology (in press)

  • Berger KM, Gese EM (2007) Does interference competition with wolves limit the distribution and abundance of coyotes? J Anim Ecol 76:1075–1085

    Article  PubMed  Google Scholar 

  • Bohling JH, Waits LP (2011) Assessing the prevalence of hybridization between sympatric Canis species surrounding the red wolf (Canis rufus) recovery area in North Carolina. Mol Ecol 20:2142–2156

    Article  PubMed  Google Scholar 

  • Börger L, Franconi N, De Michele G, Gantz A, Meschi F, Manicia A, Lovari S, Coulson T (2006) Effects of sampling regime on the mean and variance of home range size estimates. J Anim Ecol 75:1393–1405

    Article  PubMed  Google Scholar 

  • Burt WH (1943) Territoriality and home range concepts as applied to mammals. J Mammal 24:346–352

    Article  Google Scholar 

  • Carmenzind FJ (1978) Behavioral ecology of coyotes on the National Elk Refuge, Jackson, Wyoming. In: Bekoff M (ed) Coyotes: biology, behavior, and management. Academic Press, New York, pp 267–294

    Google Scholar 

  • Cook SJ, Norris DR, Theberge JB (1999) Spatial dynamics of a migratory wolf population in winter, south-central Ontario (1990–1995). Can J Zool 77:1740–1750

    Google Scholar 

  • Fieberg J, Kochanny CO (2005) Quantifying home-range overlap: the importance of the utilization distribution. J Wildl Manage 69:1346–1359

    Article  Google Scholar 

  • Forbes GJ, Theberge JB (1996) Cross-boundary management of Algonquin Park wolves. Conserv Biol 10:1091–1097

    Article  Google Scholar 

  • Fredickson RJ, Hedrick PW (2006) Dynamics of hybridization and introgression in red wolves and coyotes. Conserv Biol 20:1272–1283

    Article  Google Scholar 

  • Fritts SH, Mech LD (1981) Dynamics, movements, and feeding ecology of a newly protected wolf population in northwestern Minnesota. Wildl Monogr 80:1–79

    Google Scholar 

  • Fuller TK (1989) Population dynamics of wolves in north-central Minnesota. Wildl Monogr 105:1–41

    Google Scholar 

  • Fuller TK, Keith LB (1981) Non-overlapping ranges of coyotes and wolves in northeastern Alberta. J Mammal 62:403–405

    Article  Google Scholar 

  • García-Moreno J, Matocq MD, Roy MS, Geffen E, Wayne RK (1996) Relationships and genetic purity of the endangered Mexican wolf based on analysis of microsatellite loci. Conserv Biol 10:376–389

    Article  Google Scholar 

  • Gese EM (2001) Territorial defense by coyote (Canis latrans) in Yellowstone National Park, Wyoming: who, how, where, when, and why. Can J Zool 79:980–987

    Google Scholar 

  • Gese EM, Ruff RL (1997) Scent-marking by coyotes, Canis latrans: the influence of social and ecological factors. Anim Behav 54:1155–1166

    Article  PubMed  Google Scholar 

  • Gordon DM (1997) The population consequences of territorial behavior. Trends Ecol Evol 12:63–66

    Article  PubMed  CAS  Google Scholar 

  • Grant PR, Grant BR (1994) Phenotypic and genetic effects of hybridization in Darwin’s finches. Evolution 48:297–316

    Article  Google Scholar 

  • Hoi H, Eichler T, Dittami J (1991) Territorial spacing and interspecific competition in three species of reed warblers. Oecologia 87:443–448

    Article  Google Scholar 

  • Jędrzejewski W, Schmidt K, Theuerkauf J, Jędrzejewski B, Kowalczyk R (2007) Territory size of wolves Canis lupus: linking local (Bialowiea Primeval Forest, Poland) and Holarctic-scale patterns. Ecography 30:66–76

    Google Scholar 

  • Kyle CJ, Johnson AR, Patterson BR, Wilson PJ, Shami K, Grewal SK, White BN (2006) Genetic nature of eastern wolves: past, present, and future. Conserv Genet 7:273–287

    Article  Google Scholar 

  • Maher CR, Lott DR (1995) Definitions of territoriality used in the study of variation of vertebrate spacing systems. Anim Behav 49:1581–1597

    Article  Google Scholar 

  • Mech LD (1994) Buffer zones of territories of gray wolves as regions of intraspecific strife. J Mammal 75:199–202

    Article  Google Scholar 

  • Mech LD, Boitani L (2003) Wolf social ecology. In: Mech LD, Boitani L (eds) Wolves: behavior, ecology, and conservation. University of Chicago Press, Chicago, pp 239–258

    Chapter  Google Scholar 

  • Okoniewski JC (1982) A fatal encounter between an adult coyote and three conspecifics. J Mammal 63:679–680

    Article  Google Scholar 

  • Paquet PC (1991) Winter spatial relationships of wolves and coyotes in Riding Mountain National Park, Manitoba. J Mammal 72:397–401

    Article  Google Scholar 

  • Patterson BR, Messier F (2001) Social organization and space use of coyotes in eastern Canada relative to prey distribution and abundance. J Mammal 82:463–477

    Article  Google Scholar 

  • Peterson RO, Woolington JD, Bailey TN (1984) Wolves of the Kenai Peninsula. Wildl Monogr 88:1–52

    Google Scholar 

  • Phillips MK, Henry VG (1992) Comments on red wolf taxonomy. Conserv Biol 6:596–599

    Article  Google Scholar 

  • Pilgrim KL, Boyd DK, Forbes SH (1998) Testing for wolf-coyote hybridization in the Rocky Mountains using mitochondrial DNA. J Wildl Manage 62:683–689

    Article  Google Scholar 

  • Rich LN, Mitchell MS, Gude JA, Sime CA (2012) Anthropogenic mortality, intraspecific competition, and prey availability influence territory sizes of wolves in Montana. J Mammal 93:722–731

    Article  Google Scholar 

  • Rutledge LY, Carroway CJ, Loveless KM, Patterson BR (2010a) Genetic differentiation of eastern wolves in Algonquin Park despite bridging gene flow between coyotes and grey wolves. Heredity 11:1273–1281

    Google Scholar 

  • Rutledge LY, Patterson BR, Mills KJ, Loveless KM, Murray DM, White BN (2010b) Protection from harvesting restores the natural social structure of eastern wolf packs. Biol Conserv 143:332–339

    Article  Google Scholar 

  • Sheather SJ, Jones MC (1991) A reliable data-based bandwidth selection method for kernel density estimation. J R Stat Soc B 53:683–690

    Google Scholar 

  • Theberge JB, Theberge MT (2004) The wolves of Algonquin Park, a 12 year ecological study. Department of Geography Publication Series 56:1-215, University of Waterloo, Ontario

    Google Scholar 

  • Thurber JM, Peterson RO, Woolington JD, Vucetich JA (1992) Coyote coexistence with wolves on the Kenai Peninsula, Alaska. Can J Zool 70:2494–2498

    Article  Google Scholar 

  • Tynkkynen K, Kotiaho JS, Luojumäki M, Suhonen J (2006) Interspecific territoriality in Calopteryx damselflies: the role of secondary sexual characters. Anim Behav 71:299–306

    Article  Google Scholar 

  • Van Ballenberghe V, Erickson AW, Byman D (1975) Ecology of the timber wolf in northwestern Minnesota. Wildl Monogr 43:1–43

    Google Scholar 

  • von Holdt BM, Pollinger JP, Earl DA, et al. (2011) A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res 21:1294–1305

    Article  Google Scholar 

  • Wayne RK, Jenks SM (1991) Mitochondrial DNA analysis implying extensive hybridization of the endangered red wolf Canis rufus. Nature 351:565–568

    Article  CAS  Google Scholar 

  • Wilson EO (1975) Sociobiology: the new synthesis. Harvard University Press, Cambridge

    Google Scholar 

  • Wilson PJ, Grewal S, Lawford ID, et al. (2000) DNA profiles of the eastern Canadian wolf and the red wolf provide evidence for a common evolutionary history independent of the gray wolf. Can J Zool 78:2156–2166

    Article  Google Scholar 

  • Wolf HG, Mort MA (1986) Inter-specific hybridization underlies phenotypic variability in Daphnia populations. Oecologia 68:507–511

    Article  Google Scholar 

  • Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70:164–168

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded primarily by the Ontario Ministry of Natural Resources (OMNR)-Wildlife Research and Development Section. Additional funding was provided by Trent University through D. Murray, OMNR-Algonquin Provincial Park, World Wildlife Fund Canada, OMNR-Species at Risk, Wildlife Conservation Society Canada, and W. Garfield Weston Foundation. We thank J. Fieberg for providing computer code for overlap analyses. E. Howe and P. Mahoney provided helpful discussion during manuscript preparation. We thank P. Gelok, R. Eckenswiller, and J. Campion for field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Benson.

Additional information

Communicated by Ilpo Kojola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benson, J.F., Patterson, B.R. Inter-specific territoriality in a Canis hybrid zone: spatial segregation between wolves, coyotes, and hybrids. Oecologia 173, 1539–1550 (2013). https://doi.org/10.1007/s00442-013-2730-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2730-8

Keywords

Navigation