Skip to main content

Advertisement

Log in

Tracing alpha, beta, and gamma diversity responses to environmental change in boreal lakes

  • Global change ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Boreal lakes undergo broad-scale environmental change over time, but biodiversity responses to these changes, particularly at macroecological scales, are not well known. We studied long-term trends (1992–2009) of environmental variables and assessed α, β, and γ diversity responses of phytoplankton and littoral invertebrates to these changes. Diversity was assessed based on taxon richness (“richness”) and the exponentiated Shannon entropy (“diversity”). Almost all environmental variables underwent significant monotonic change over time, indicating mainly decreasing acidification, water clarity and nutrient concentrations in the lakes. These variables explained about 54 and 38 % of variance in regression models of invertebrates and phytoplankton, respectively. Despite this, most diversity-related variables fluctuated around a long-term mean. Only α and γ richness and diversity of invertebrates increased monotonically through time, and these patterns correlated significantly with local and regional abundances. Results suggest that biodiversity in boreal lakes is currently stable, with no evidence of regional biotic homogenization or local diversity loss. Results also show that richness trends between phytoplankton and invertebrates were widely uncorrelated, and the same was found for diversity trends. Also, within each taxonomic group, temporal patterns of richness and diversity were largely uncorrelated with each other. From an applied perspective, this suggest that long-term trends of biodiversity in boreal lakes at a macroecological scale cannot be accurately assessed without multiple lines of evidence, i.e. through the use of multiple taxa and diversity-related variables in the analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Addicott JF (1974) Predation and prey community structure: an experimental study of the effect of mosquito larvae on the protozoan communities of pitcher plants. Ecology 55:475–492

    Article  Google Scholar 

  • Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of ß diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28

    Article  PubMed  Google Scholar 

  • Angeler DG, Johnson RK (2012) Temporal scales and patterns of invertebrate biodiversity dynamics in boreal lakes recovering from acidification. Ecol Appl 22:1172–1186

    Article  PubMed  Google Scholar 

  • Angeler DG, Trigal C, Drakare S, Johnson RK, Goedkoop W (2010) Identifying resilience mechanisms to recurrent ecosystem perturbations. Oecologia 164:231–241

    Article  PubMed  Google Scholar 

  • Angeler DG, Drakare S, Johnson RK (2011) Revealing the organization of complex adaptive systems through multivariate time series modeling. Ecol Soc 16(3):5. http://www.ecologyandsociety.org/vol16/iss3/art5

    Google Scholar 

  • Angeler DG, Allen CR, Johnson RK (2012) Insight on invasions and resilience derived from spatiotemporal discontinuities of biomass at local and regional scales. Ecol Soc 17(2):32. http://www.ecologyandsociety.org/vol17/iss2/art32/

  • Axmacher JC, Wang CL, Li LT, Yu ZR (2011) Spatial alpha-diversity patterns of diverse insect taxa in Northern China: lessons for biodiversity conservation. Biol Conserv 144:2362–2368

    Article  Google Scholar 

  • Baselga A (2010) Multiplicative partitioning of true diversity yields independent alpha and beta components, additive partitioning does not. Ecology 91:1974–1981

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information theoretic approach, 2nd edn. Springer, New York

  • Devictor V, Julliard R, Clavel J, Jiguet F, Lee A, Couvet D (2008) Functional biotic homogenization of bird communities in disturbed landscapes. Glob Ecol Biogeogr 17:252–261

    Article  Google Scholar 

  • Durbin J, Watson GS (1950) Testing for serial correlation in least squares regression, I. Biometrika 37:409–428

    PubMed  CAS  Google Scholar 

  • Durbin J, Watson GS (1951) Testing for serial correlation in least squares regression, II. Biometrika 38:159–179

    PubMed  CAS  Google Scholar 

  • Erlandsson M, Buffam I, Fölster J, Laudon H, Temnerud J, Weyhenmeyer GA, Bishop K (2008) Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulfate. Glob Change Biol 14:1191–1198

    Article  Google Scholar 

  • Evans CD, Monteith DT, Cooper DM (2005) Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environ Pollut 137:55–71

    Article  PubMed  CAS  Google Scholar 

  • Flohre A, Fischer C, Aavik T, Bengtsson J, Berendse F, Bommarco R, Ceryngier P, Clement LW, Dennis C, Eggers S, Emmerson M, Geiger F, Guerrero I, Hawro V, Inchausti P, Liira J, Morales MB, Oñate JJ, Pärt T, Weisser WW, Winqvist C, Thies C, Tscharntke T (2011) Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecol Appl 21:1772–1781

    Article  PubMed  Google Scholar 

  • Goedkoop W, Angeler D (2011) Biologiska och vattenkemiska förändringar i arktiska och arktisk/alpina sjöar. Report 2011: 17 Department of Aquatic Sciences and Assessment, Uppsala, Sweden. Available at: http://publikationer.slu.se/Filer/IVM_Rapport2011_7.pdf

  • Golodets C, Kigel J, Sternberg M (2011) Plant diversity partitioning in grazed Mediterranean grassland at multiple spatial and temporal scales. J Appl Ecol 48:1260–1268

    Article  Google Scholar 

  • Göransson E, Johnson RK, Wilander A (2004) Representativity of a mid-lake surface water chemistry sample. Environ Monit Assess 95:221–238

    Article  PubMed  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Grinnell J (1922) The role of the “accidental”. Auk 39:373–380

    Article  Google Scholar 

  • Heino J (2010) Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? Ecol Ind 10:112–117

    Article  Google Scholar 

  • Hendrickx F, Maelfait J-P, Van Wingerden W, Schweiger O, Speelmans M, Aviron S, Augenstein I, Billeter R, Bailey D, Bukacek R, Burel F, Diekötter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Butger R (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351

    Article  Google Scholar 

  • Hill J, Hamer K, Tangah J, Dawood M (2001) Ecology of tropical butterflies in rainforest gaps. Oecologia 128:294–302

    Article  Google Scholar 

  • Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89:1510–1520

    Article  PubMed  Google Scholar 

  • Johnson RK (1999) Regional representativeness of Swedish reference lakes. Environ Manag 23:115–124

    Article  Google Scholar 

  • Johnson RK, Angeler DG (2010) Tracing recovery under changing climate: response of phytoplankton and invertebrate assemblages to decreased acidification. J North Am Benthol Soc 29:1472–1490

    Article  Google Scholar 

  • Johnson RK, Hering D (2009) Response of taxonomic groups in streams to gradients in resource and habitat characteristics. J Appl Ecol 46:175–186

    Article  Google Scholar 

  • Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439

    Article  PubMed  Google Scholar 

  • Jost L (2010) The relation between evenness and diversity. Diversity 2:207–232

    Article  Google Scholar 

  • Keith SA, Newton AC, Morecroft MD, Bealey CE, Bullock JM (2009) Taxonomic homogenization of woodland plant communities over 70 years. Proc R Soc Lond B 276:3539–3544

    Article  Google Scholar 

  • Kendall M (1938) A new measure of rank correlation. Biometrika 30:81–89

    Google Scholar 

  • Kerr JT, Kharouba HM, Currie DJ (2007) The macroecological contribution to global change solutions. Science 316:1581–1584

    Article  PubMed  CAS  Google Scholar 

  • Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence-absence data. J Anim Ecol 72:367–382

    Article  Google Scholar 

  • Kühn I, Böhning-Gaese K, Cramer W, Klotz S (2008) Macroecology meets global change research. Glob Ecol Biogeogr 17:3–4

    Article  Google Scholar 

  • Lepistö L, Holopainen A-L, Vuoristo H (2004) Type-specific and indicator taxa of phytoplankton as a quality criterion for assessing the ecological status of Finnish boreal lakes. Limnologica 34:236–248

    Article  Google Scholar 

  • Limberger R, Wickham SA (2012) Disturbance and diversity at two spatial scales. Oecologia 168:785–795

    Article  PubMed  Google Scholar 

  • Lindenmeyer DB, Likens GE (2011) Direct measurement versus surrogate indicator species for evaluating environmental change and biodiversity loss. Ecosystems 14:47–59

    Article  Google Scholar 

  • Lopes PM, Caliman A, Carneiro LS, Bini LM, Esteves FA, Farjalla V, Bozelli RL (2011) Concordance among assemblages of upland Amazonian lakes and the structuring role of spatial and environmental factors. Ecol Ind 11:1171–1176

    Article  Google Scholar 

  • Ma M (2005) Species richness vs evenness: independent relationship and different responses to edaphic factors. Oikos 111:192–198

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  • Marchetto A, Padedda BM, Mariani MA, Luglie A, Sechi N (2009) A numerical index for evaluating phytoplankton response to changes in nutrient levels in deep Mediterranean reservoirs. J Limnol 68:106–121

    Article  Google Scholar 

  • Matthiessen B, Ptacnik R, Hillebrand H (2010a) Diversity and community biomass depend on dispersal and disturbance in microalgal communities. Hydrobiologia 653:65–78

    Article  CAS  Google Scholar 

  • Matthiessen B, Mielke E, Sommer U (2010b) Dispersal decreases diversity in heterogeneous metacommunities by enhancing regional competition. Ecology 91:2022–2033

    Article  PubMed  Google Scholar 

  • McFarland B, Carse F, Sandin L (2010) Littoral macroinvertebrates as indicators of lake acidification within the UK. Aquat Cons Mar Freshw Ecosyst 20:S105–S116

    Article  Google Scholar 

  • Millennium ecosystem assessment (2005) Ecosystems and human well-being: current state and trends. Island Press, Washington. http://www.maweb.org/en/Condition.aspx#download

  • Monteith DT, Stoddard JL, Evans CD, De Wit HA, Forsius M, Høgåsen T, Wilander A, Skjelkvåle BL, Jeffries D, Vuorenmaa J, Keller B, Kopácek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–541

    Article  PubMed  CAS  Google Scholar 

  • Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24

    Article  PubMed  Google Scholar 

  • Olrik KP, Blomqvist P, Brettum P, Cronberg G, Eloranta P (1989) Methods for quantitative assessment of phytoplankton in freshwaters, part I. Swedish Environmental Protection Agency, Stockholm

  • Poiani KA, Richter BD, Anderson MG, Richter HE (2000) Biodiversity conservation at multiple scales: functional sites, landscapes, network. Bioscience 50:133–146

    Article  Google Scholar 

  • Ptacnik R, Andersen T, Brettum P, Lepistö L, Willén E (2010) Regional species pools control community saturation in lake phytoplankton. Proc R Soc Lond B 277:3755–3764

    Article  Google Scholar 

  • Purvis A, Hector A (2000) Getting a measure of biodiversity. Nature 405:212–219

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://cran.r-project.org

  • Rajaniemi TK (2011) Competition for patchy soil resources reduces community evenness. Oecologia 165:169–174

    Article  PubMed  Google Scholar 

  • Salmaso N, Morabito G, Buzzi F, Garibaldi L, Simona M, Mosello R (2006) Phytoplankton as an indicator of the water quality of the deep lakes south of the Alps. Hydrobiologia 563:167–187

    Article  CAS  Google Scholar 

  • Santia E, Maccherinia S, Rocchinia D, Boninia I, Brunialtia G, Favillia L, Perninia C, Pezzoa E, Piazzinia S, Rotaa E, Salernia E, Chiaruccia A (2010) Simple to sample: vascular plants as surrogate group in a nature reserve. J Nat Cons 18:2–11

    Article  Google Scholar 

  • Scheiner SM, Chiarucci A, Fox GF, Helmus MR, McGlinn DJ, Willig MR (2011) The underpinnings of the relationship of species richness with space and time. Ecol Monogr 81:195–213

    Article  Google Scholar 

  • Spear D, Chown S (2008) Taxonomic homogenization in ungulates: patterns and mechanisms at local and global scales. J Biogeogr 35:1962–1975

    Article  Google Scholar 

  • Stendera SES, Johnson RK (2005) Additive partitioning of aquatic invertebrate species diversity across multiple spatial scales. Freshw Biol 50:1360–1375

    Article  Google Scholar 

  • Stendera S, Johnson RK (2008) Tracking recovery trends of boreal lakes: use of multiple indicators and habitats. J North Am Benthol Soc 27:529–540

    Article  Google Scholar 

  • Sucker C, Krause K (2010) Increasing dissolved organic carbon concentrations in freshwaters: what is the actual driver? For Biogeosci For 3:106–108

    Article  Google Scholar 

  • Tolonen KT, Holopainen IJ, Hamalainen H, Rahkola-Sorsa M, Ylostalo P, Mikkonen K, Karjalainen J (2005) Littoral species diversity and biomass: concordance among organismal groups and the effects of environmental variables. Biodivers Conserv 14:961–980

    Article  Google Scholar 

  • Tuomisto H (2010) A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33:2–22

    Article  Google Scholar 

  • Tuomisto H (2012) An updated consumer′s guide to evenness and related indices. Oikos 121:1203–1218

    Article  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Sisjiyou Mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Article  Google Scholar 

  • Wilander A, Johnson RK, Goedkoop W (2003) Riksinventering 2000. En synoptisk studie av vattenkemi och bottenfauna i svenska sjöar och vattendrag. Institutionen för Miljöanalys, Uppsala

  • Xu HG, Wu J, Liu Y, Ding H, Zhang M, Wu Y, Xi Q, Wang LL (2008) Biodiversity congruence and conservation strategies: a national test. Bioscience 58:632–639

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Swedish Environmental Protection Agency and the many people involved in the monitoring program for making the analyses of these datasets possible. This work was supported by the DYNAMO project funded from the “Oscar and Lili Lamms Minne” Foundation. Additional support from the REFRESH (Adaptive Strategies to Mitigate the Impacts of Climate Change on European Freshwater Ecosystems, contract No 244121,) project funded by the European Union under the 7th Framework Programme, Theme 6 (Environment including Climate Change) is acknowledged. We thank the reviewers for providing constructive criticism that helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Angeler.

Additional information

Communicated by Ulrich Sommer.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angeler, D.G., Drakare, S. Tracing alpha, beta, and gamma diversity responses to environmental change in boreal lakes. Oecologia 172, 1191–1202 (2013). https://doi.org/10.1007/s00442-012-2554-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2554-y

Keywords

Navigation