Skip to main content

Advertisement

Log in

A long-term experimental test of the dynamic equilibrium model of species diversity

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The dynamic equilibrium model of species diversity predicts that ecosystem productivity interacts with disturbance to determine how many species coexist. However, a robust test of this model requires manipulations of productivity and disturbance over a sufficient timescale to allow competitive exclusion, and such long-term experimental tests of this hypothesis are rare. Here we use long-term (27 years), large-scale (8 × 50-m plots), factorial manipulations of soil resource availability and sheep grazing intensity (disturbance) in grasslands to test the dynamic equilibrium model. As predicted by the model, increased productivity not only reduced plant species richness, but also moderated the effects of grazing intensity, shifting them from negative to neutral with increasing productivity. Reductions in species richness with productivity were associated with dominance by faster growing (i.e. high specific leaf area) and taller plants. Conversely, grazing favoured shorter plants and this effect became stronger with greater productivity, consistent with the view that grazing can lead to weaker asymmetric competition for light. Our study shows that the dynamic equilibrium model can help to explain changes in plant species richness following long-term increases in soil resource availability and grazing pressure, two fundamental drivers of change in grasslands worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adler PB, Seabloom EW, Borer ET, Hillebrand H, Hautier Y et al (2011) Productivity is a poor predictor of plant species richness. Science 333:1750–1753. doi:10.1126/science.1204498

    Article  PubMed  CAS  Google Scholar 

  • Aerts R (1999) Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. J Exp Bot 50:29–37

    CAS  Google Scholar 

  • Aiken LS, West SG (1991) Multiple regression: testing and interpreting interactions. Sage, Newbury Park

    Google Scholar 

  • Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT (2004) Grazing systems, ecosystem responses, and global change. Annu Rev Environ Resour 29:261–299

    Article  Google Scholar 

  • Bagchi S, Ritchie ME (2010) Herbivore effects on above- and belowground plant production and soil nitrogen availability in the Trans-Himalayan shrub-steppes. Oecologia 164:1075–1082. doi:10.1007/s00442-010-1690-5

    Article  PubMed  Google Scholar 

  • Bakker ES, Ritchie ME, Olff H, Milchunas DG, Knops JMH (2006) Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol Lett 9:780–788. doi:10.1111/j.1461-0248.2006.00925.x

    Article  PubMed  Google Scholar 

  • Balvanera P, Pfisterer AB, Buchmann N, He J-S, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  PubMed  Google Scholar 

  • Bates D, Maechler M (2010) lme4: linear mixed-effects models using S4 classes. The Comprehensive R Archive Network (CRAN), Vienna

    Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Bouwman AF, Van der Hoek KW, Eickhout B, Soenario I (2005) Exploring changes in world ruminant production systems. Agric Syst 84:121–153

    Article  Google Scholar 

  • Connell J (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Den Boer PJ, Gradwell GR (eds) Dynamics of populations. PUDOC, Wageningen

    Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    Article  PubMed  CAS  Google Scholar 

  • Coulter JD (1975) The climate. In: Kuschel G (ed) Biogeography and ecology in New Zealand. Junk, The Hague, pp 87–138

    Chapter  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  PubMed  CAS  Google Scholar 

  • Frank DA (2005) The interactive effects of grazing ungulates and aboveground production on grassland diversity. Oecologia 143:629–634. doi:10.1007/s00442-005-0019-2

    Article  PubMed  Google Scholar 

  • Garnier E, Shipley B, Roumet C, Laurent G (2001) A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct Ecol 15:688–695

    Article  Google Scholar 

  • Garnier E, Cortez J, Billès G, Navas M-L, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint J-P (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637

    Article  Google Scholar 

  • Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Fortunel C, Freitas H, Golodets C, Grigulis K, Jouany C, Kazakou E, Kigel J, Kleyer M, Lehsten V, Leps J, Meier T, Pakeman R, Papadimitriou M, Papanastasis VP, Quested H, Quétier F, Robson M, Roumet C, Rusch G, Skarpe C, Sternberg M, Theau J-P, Thebault A, Vile D, Zarovali MP (2007) Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann Bot 99:967–985

    Article  PubMed  Google Scholar 

  • Gaudet CL, Keddy PA (1988) A comparative approach to predicting competitive ability from plant traits. Nature 334:242–243. doi:10.1038/334242a0

    Article  Google Scholar 

  • Grace JB (2001) The roles of community biomass and species pools in the regulation of plant diversity. Oikos 92:193–207. doi:10.1034/j.1600-0706.2001.920201.x

    Article  Google Scholar 

  • Grace JB, Michael Anderson T, Smith MD, Seabloom E, Andelman SJ, Meche G, Weiher E, Allain LK, Jutila H, Sankaran M, Knops J, Ritchie M, Willig MR (2007) Does species diversity limit productivity in natural grassland communities? Ecol Lett 10:680–689

    Article  PubMed  Google Scholar 

  • Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242:344–347

    Article  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester

    Google Scholar 

  • Guisan A, Edwards TC Jr, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100. doi:10.1016/S0304-3800(02)00204-1

    Article  Google Scholar 

  • Haddad NM, Holyoak M, Mata TM, Davies KF, Melbourne BA, Preston K (2008) Species’ traits predict the effects of disturbance and productivity on diversity. Ecol Lett 11:348–356. doi:10.1111/j.1461-0248.2007.01149.x

    Article  PubMed  Google Scholar 

  • Hewitt AE (1998) New Zealand soil classification. Manaaki Whenua, Lincoln

    Google Scholar 

  • Huston MA (1979) A general hypothesis of species diversity. Am Nat 113:81–101

    Article  Google Scholar 

  • Huston MA (1980) Patterns of species diversity in an old field ecosystem. Bull Ecol Soc Am 61:110

    Google Scholar 

  • Huston MA (1994) Biological diversity. Cambridge University Press, Cambridge

    Google Scholar 

  • Huston MA (1999) Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos 86:393–401

    Article  Google Scholar 

  • Huston MA, McBride AC (2002) Evaluating the relative strengths of biotic versus abiotic controls on ecosystem processes. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, UK, pp 47–60

    Google Scholar 

  • Hutchinson GE (1961) The paradox of the plankton. Am Nat 95:137–145

    Article  Google Scholar 

  • Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528

    Article  Google Scholar 

  • Kneitel JM, Chase JM (2004) Disturbance, predator, and resource interactions alter container community composition. Ecology 85:2088–2093. doi:10.1890/03-3172

    Article  Google Scholar 

  • Laliberté E, Tylianakis JM (2012) Cascading effects of long-term land-use changes on plant traits and ecosystem functioning. Ecology 93:145–155. doi:10.1890/11-0338.1

    Article  PubMed  Google Scholar 

  • Laliberté E, Norton DA, Tylianakis JM, Scott D (2010) Comparison of two sampling methods for quantifying changes in vegetation community structure under rangeland development. Rang Ecol Manage 63:537–545

    Article  Google Scholar 

  • Laliberté E, Shipley B, Norton DA, Scott D (2012) Which plant traits determine abundance under long-term shifts in soil resource availability and grazing intensity? J Ecol 100:662–677. doi:10.1111/j.1365-2745.2011.01947.x

    Article  Google Scholar 

  • Lambers H, Poorter H (1992) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv Ecol Res 23:187–261

    Article  CAS  Google Scholar 

  • Lauenroth WK (2000) Methods of estimating belowground net primary production. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (eds) Methods in ecosystem science. Springer, New York, pp 58–71

    Chapter  Google Scholar 

  • McGlone MS (2001) The origin of native grasslands of southeastern South Island in relation to pre-human woody ecosystems. NZ J Ecol 25:1–15

    Google Scholar 

  • McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71. doi:10.1038/415068a

    Article  PubMed  CAS  Google Scholar 

  • McNaughton SJ, Oesterheld M, Frank DA, Williams KJ (1989) Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341:142–144

    Article  PubMed  CAS  Google Scholar 

  • Mittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L (2001) What is the observed relationship between species richness and productivity? Ecology 82:2381–2396

    Google Scholar 

  • Murphy WM, Silman JP, Barreto ADM (1995) A comparison of quadrat, capacitance meter, HFRO sward stick, and rising plate for estimating herbage mass in a smooth-stalked, meadowgrass-dominant white clover sward. Grass Forage Sci 50:452–455

    Article  Google Scholar 

  • Olff H, Ritchie ME (1998) Effects of herbivores on grassland plant diversity. Trends Ecol Evol 13:261–265

    Article  PubMed  CAS  Google Scholar 

  • Orme CDL, Davies RG, Burgess M, Eigenbrod F, Pickup N, Olson VA, Webster AJ, Ding T-S, Rasmussen PC, Ridgely RS, Stattersfield AJ, Bennett PM, Blackburn TM, Gaston KJ, Owens IPF (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature 1016–1019

  • Osem Y, Perevolotsky A, Kigel J (2002) Grazing effect on diversity of annual plant communities in a semi-arid rangeland: interactions with small-scale spatial and temporal variation in primary productivity. J Ecol 90:936–946

    Article  Google Scholar 

  • Palmer M (1994) Variation in species richness: towards a unification of hypotheses. Folia Geobot 29:511–530

    Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York

    Book  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S (2010) nlme: linear and nonlinear mixed effects models. The Comprehensive R Archive Network (CRAN), Vienna

    Google Scholar 

  • Proulx M, Mazumder A (1998) Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient-rich ecosystems. Ecology 79:2581–2592

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rashit E, Bazin M (1987) Environmental fluctuations, productivity, and species diversity: an experimental study. Microb Ecol 14:101–112. doi:10.1007/BF02013016

    Article  Google Scholar 

  • Ricklefs RE (1977) Environmental heterogeneity and plant species diversity: a hypothesis. Am Nat 111:376–381

    Article  Google Scholar 

  • Scholes L, Warren PH, Beckerman AP (2005) The combined effects of energy and disturbance on species richness in protist microcosms. Ecol Lett 8:730–738. doi:10.1111/j.1461-0248.2005.00777.x

    Article  Google Scholar 

  • Scott D (1999) Sustainability of New Zealand high-country pastures under contrasting development inputs. 1. Site, and shoot nutrients. NZ J Agric Res 42:365–383

    Article  Google Scholar 

  • Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611. doi:10.1016/j.tree.2004.09.003

    Article  Google Scholar 

  • Stevens MHH, Carson WP (1999) Plant density determines species richness along an experimental fertility gradient. Ecology 80:455–465

    Article  Google Scholar 

  • Svensson JR, Lindegarth M, Siccha M, Lenz M, Molis M, Wahl M, Pavia H (2007) Maximum species richness at intermediate frequencies of disturbance: consistency among levels of productivity. Ecology 88:830–838. doi:10.1890/06-0976

    Article  PubMed  Google Scholar 

  • Svensson JR, Lindegarth M, Pavia H (2010) Physical and biological disturbances interact differently with productivity: effects on floral and faunal richness. Ecology 91:3069–3080. doi:10.1890/09-0671.1

    Article  PubMed  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Turner BL (2008) Resource partitioning for soil phosphorus: a hypothesis. J Ecol 96:698–702

    Article  CAS  Google Scholar 

  • Warner RR, Chesson PL (1985) Coexistence mediated by recruitment fluctuations: a field guide to the storage effect. Am Nat 125:769–787

    Article  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227. doi:10.1023/A:1004327224729

    Article  CAS  Google Scholar 

  • Westoby M (1999) The LHS strategy in relation to grazing and fire. In: Eldridge D, Freudenberger D (eds) Proceedings VI International Rangeland Congress. International Rangeland Congress, Townsville, pp 893–896

    Google Scholar 

  • Whittaker RH, Levin SA, Root RB (1973) Niche, habitat, and ecotope. Am Nat 107:321–338

    Article  Google Scholar 

  • Widdicombe S, Austen MC (2001) The interaction between physical disturbance and organic enrichment: an important element in structuring benthic communities. Limnol Oceanogr 46:1720–1733

    Article  Google Scholar 

  • Wilson SD, Tilman D (2002) Quadratic variation in old-field species richness along gradients of disturbance and nitrogen. Ecology 83:492–504

    Article  Google Scholar 

  • Worm B, Lotze HK, Hillebrand H, Sommer U (2002) Consumer versus resource control of species diversity and ecosystem functioning. Nature 417:848–851. doi:10.1038/nature00830

    Article  PubMed  CAS  Google Scholar 

  • Zobel M (1997) The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends Ecol Evol 12:266–269. doi:10.1016/S0169-5347(97)01096-3

    Article  PubMed  CAS  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

We thank D. Scott for allowing the use of his experiment. H. O. Venterink and R. A. Standish provided insightful comments on previous versions of this paper. P. Fortier, D. Scott, J. Morgenroth, A. Williams, G. Pilon, K. Bott, J. H. Lapointe, K. Pellerin, K. Rondeau, J. Rondeau, and E. Razavy Toosi kindly helped with field work. D. Scott, L. Kirk, A. Leckie, and N. Pink provided academic and logistical support. A. Simpson provided stock. Financial support came from the Miss E. L. Hellaby Indigenous Grassland Research Trust. E. L. was supported by the University of Canterbury, Fonds québécois de recherche sur la nature et les technologies, Education New Zealand, the University of Western Australia and the Australian Research Council (DE120100352). The experiments complied with the current laws of the country in which they were performed (New Zealand).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Laliberté.

Additional information

Communicated by Bernhard Schmid.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 116 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laliberté, E., Lambers, H., Norton, D.A. et al. A long-term experimental test of the dynamic equilibrium model of species diversity. Oecologia 171, 439–448 (2013). https://doi.org/10.1007/s00442-012-2417-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2417-6

Keywords

Navigation