Skip to main content

Advertisement

Log in

Effects of salinity on the immune response of an ‘osmotic generalist’ bird

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Salt stress can suppress the immune function of fish and other aquatic animals, but such an effect has not yet been examined in air-breathing vertebrates that frequently cope with waters (and prey) of contrasting salinities. We investigated the effects of seawater salinity on the strength and cost of mounting an immune response in the dunlin Calidris alpina, a long-distance migratory shorebird that shifts seasonally from freshwater environments during the breeding season to marine environments during migration and the winter period. Phytohaemagglutinin (PHA)-induced skin swelling, basal metabolic rate (BMR), body mass, fat stores, and plasma ions were measured in dunlins acclimated to either freshwater or seawater (salinity: 0.3 and 35.0 ‰, respectively). Seawater-acclimated dunlins mounted a PHA-induced swelling response that was up to 56 % weaker than those held under freshwater conditions, despite ad libitum access to food. Freshwater-acclimated dunlins significantly increased their relative BMR 48 h after PHA injection, whereas seawater-acclimated dunlins did not. However, this differential immune and metabolic response between freshwater- and seawater-acclimated dunlins was not associated with significant changes in body mass, fat stores or plasma ions. Our results indicate that the strength of the immune response of this small-sized migratory shorebird was negatively influenced by the salinity of marine habitats. Further, these findings suggest that the reduced immune response observed under saline conditions might not be caused by an energy or nutrient limitation, and raise questions about the role of osmoregulatory hormones in the modulation of the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonso-Alvarez C, Tella JL (2001) Effects of experimental food restriction and body mass changes on the avian T-cell mediated immune response. Can J Zool 79:101–105. doi:10.1139/cjz-79-1-101

    Article  Google Scholar 

  • Apanius V (1998) Stress and immune defense. Adv Study Behav 27:133–153

    Article  Google Scholar 

  • Battley PF, Rogers DI, Piersma T, Koolhaas A (2003) Behavioural evidence for heat-load problems in great knots in tropical Australia fuelling for long-distance flight. Emu 103:97–103

    Article  Google Scholar 

  • Bennett DC, Gray DA, Hughes MR (2003) Effect of saline intake on water flux and osmotic homeostasis in Pekin ducks (Anas platyrhynchos). J Comp Physiol B 173:27–36. doi:10.1007/s00360-002-0306-8

    PubMed  CAS  Google Scholar 

  • Bennett GF (1993) Phylogenetic distribution and possible evolution of the avian species of the Haemoproteidae. Syst Parasitol 26:39–44

    Article  Google Scholar 

  • Bentley PJ (2002) Endocrines and osmoregulation: a comparative account in vertebrates, 2nd edn. Springer, Berlin

    Google Scholar 

  • Blakey R, Zharikov Y, Skilleter GA (2006) Lack of an osmotic constraint on intake rate of the eastern curlew (Numenius madagascariensis). J Avian Biol 37:299–305. doi:10.1111/j.2006.0908-8857.03828.x

    Article  Google Scholar 

  • Bonneaud C, Mazuc J, Gonzalez G, Haussy C, Chastel O, Faivre B, Sorci G (2003) Assessing the cost of mounting an immune response. Am Nat 161:367–379. doi:10.1086/346134

    Article  PubMed  Google Scholar 

  • Buehler DM, Piersma T, Matson K, Tieleman BI (2008a) Seasonal redistribution of immune function in a migrant shorebird: annual-cycle effects override adjustments to thermal regime. Am Nat 172:783–796. doi:10.1086/592865

    Article  PubMed  Google Scholar 

  • Buehler DM, Piersma T, Tieleman BI (2008b) Captive and free-living red knots exhibit differences in non-induced immunity suggesting different immune strategies in different environments. J Avian Biol 39:560–566. doi:10.1111/j.2008.0908-8857.04408.x

    Article  Google Scholar 

  • Buehler DM, Tieleman BI, Piersma T (2009a) Age and environment affect constitutive immune function in Red Knots (Calidris canutus). J Ornithol 150:815–825. doi:10.1007/s10336-009-0402-6

    Article  Google Scholar 

  • Buehler DM, Encinas-Viso F, Petit M, Vézina F, Tieleman BI, Piersma T (2009b) Limited access to food and physiological trade-offs in a long-distance migrant shorebird. II. Constitutive immune function and the acute-phase response. Physiol Biochem Zool 82:561–571. doi:10.1086/603635

    Article  PubMed  CAS  Google Scholar 

  • Burger J, Gochfeld M (1984) Seasonal variation in size and function of the nasal salt gland of the Franklin’s Gull (Larus pipixcan). Comp Biochem Physiol 77:103–110

    Article  Google Scholar 

  • Bussell JA, Gidman EA, Causton DR, Gwynn-Jones D, Malham SK, Jones MLM, Reynolds B, Seed R (2008) Changes in the immune response and metabolic fingerprint of the mussel, Mytilus edulis (Linnaeus) in response to lowered salinity and physical stress. J Exp Mar Biol Ecol 358:78–85. doi:10.1016/j.jembe.2008.01.018

    Google Scholar 

  • Cuesta A, Laiz-Carrión R, Del Río MP, Meseguer J, Mancera JM, Esteban MA (2005) Salinity influences the humoral immune parameters of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 18:255–261. doi:10.1016/j.fsi.2004.07.009

    Article  PubMed  CAS  Google Scholar 

  • Demas GE, Zysling DA, Beechler BR, Muehlenbein MP, French SS (2011) Beyond phytohaemagglutinin: assessing vertebrate immune function across ecological contexts. J Anim Ecol 80:710–730. doi:10.1111/j.1365-2656.2011.01813.x

    Article  PubMed  Google Scholar 

  • Doch JJ (1997) Salt tolerance of nestling Laughing Gulls: an experimental field investigation. Col Waterbirds 20:449–457

    Article  Google Scholar 

  • Figuerola J (1999) Effects of salinity on rates of infestation of waterbirds by haematozoa. Ecography 22:681–685

    Article  Google Scholar 

  • Frederick PC (2002) Wading birds in the marine environment. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, New York, pp 617–655

    Google Scholar 

  • Fries CR (1986) Effects of environmental stressors and immunosuppressants on immunity in Fundulus heteroclitus. Am Zool 26:271–282. doi:10.1093/icb/26.1.271

    Google Scholar 

  • Gessaman JA, Nagy KA (1988) Energy-metabolism: errors in gas exchange conversion factors. Physiol Zool 61:507–513

    Google Scholar 

  • Gutiérrez JS, Masero JA, Abad-Gómez JM, Villegas A, Sánchez-Guzmán JM (2011a) Understanding the energetic costs of living in saline environments: effects of salinity on basal metabolic rate, body mass and daily energy consumption of a long-distance migratory shorebird. J Exp Biol 214:829–835. doi:10.1242/jeb.048223

    Article  PubMed  Google Scholar 

  • Gutiérrez JS, Masero JA, Abad-Gómez JM, Villegas A, Sánchez-Guzmán JM (2011b) Metabolic consequences of overlapping food restriction and cell-mediated immune response in a long-distance migratory shorebird, the little ringed plover Charadrius dubius. J Avian Biol 42:259–265. doi:10.1111/j.1600-048X.2011.05323.x

    Article  Google Scholar 

  • Gutiérrez JS, Dietz MW, Masero JA, Gill RE Jr, Dekinga A, Battley PF, Sánchez-Guzmán JM, Piersma T (2012) Functional ecology of saltglands in shorebirds: flexible responses to variable environmental conditions. Funct Ecol 26:236–244. doi:10.1111/j.1365-2435.2011.01929.x

    Article  Google Scholar 

  • Goldstein DL (2002) Water and salt balance in seabirds. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, New York, pp 467–483

    Google Scholar 

  • Hasselquist D (2007) Comparative immunoecology in birds: hypotheses and tests. J Ornithol 148:S571–S582

    Article  Google Scholar 

  • Hildebrandt JP (1997) Changes in Na+/K+-ATPase expression during adaptive cell differentiation in avian nasal salt gland. J Exp Biol 200:1895–1904

    PubMed  CAS  Google Scholar 

  • Hill RW (1972) Determination of oxygen consumption by use of the paramagnetic oxygen analyzer. J Appl Physiol 33:261–263

    PubMed  CAS  Google Scholar 

  • Hughes MR (2003) Regulation of salt gland, gut and kidney interactions. Comp Biochem Physiol A 136:507–524. doi:10.1016/j.cbpb.2003.09.005

    Article  CAS  Google Scholar 

  • Jiang IF, Kumar VB, Lee DN, Weng CF (2008) Acute osmotic stress affects Tilapia (Oreochromis mossambicus) innate immune responses. Fish Shellfish Immunol 25:841–846. doi:10.1016/j.fsi.2008.09.006

    Article  PubMed  CAS  Google Scholar 

  • Johnston JW, Bildstein KL (1990) Dietary salt as a physiological constraint in white ibis breeding in an estuary. Physiol Zool 63:190–207

    Google Scholar 

  • Joseph A, Philip R (2007) Acute salinity stress alters the haemolymph metabolic profile of Penaeus monodon and reduces immunocompetence to white spot syndrome virus infection. Aquaculture 272:87–97. doi:10.1016/j.aquaculture.2007.08.047

    Article  CAS  Google Scholar 

  • Kelly JP (2000) Foraging distribution and energy balance in wintering Dunlin. PhD dissertation, University of California, Davis

  • Kendeigh SC, Dol’nik VR, Gavrilov VM (1977) Avian energetics. In: Pinowski J, Kendiegh SC (eds) Granivorous birds in ecosystems. Cambridge University Press, New York, pp 127–204

  • Klaassen M, Ens BJ (1990) Is salt stress a problem for waders wintering on the Banc d’Arguin, Mauritania? Ardea 78:67–74

    Google Scholar 

  • Klasing KC, Peng RK (1987) Influence of cell sources, stimulating agents, and incubation conditions on release of interleukin-1 from chicken macrophages. Dev Comp Immunol 11:385–394. doi:10.1016/0145-305X(87)90082-6

    Article  PubMed  CAS  Google Scholar 

  • Koteja P (1996) Measuring energy metabolism with open-flow respirometric systems: which design to choose? Funct Ecol 10:675–677

    Article  Google Scholar 

  • Lee KA, Martin LB, Wikelski MC (2005) Responding to inflammatory challenges is less costly for a successful avian invader, the house sparrow (Passer domesticus), than its less invasive congener. Oecologia 145:244–251. doi:10.1007/s00442-005-0113-5

    Article  PubMed  Google Scholar 

  • Lei F, Poulin R (2011) Effects of salinity on multiplication and transmission of an intertidal trematode parasite. Mar Biol 158:995–1003. doi:10.1007/s00227-011-1625-7

    Article  Google Scholar 

  • Martin LB, Scheuerlein A, Wikelski M (2003) Immune activity elevates energy expenditure of house sparrows: a link between direct and indirect costs? Proc R Soc Lond B 270:153–158. doi:10.1098/rspb.2002.2185

    Article  Google Scholar 

  • Martin LB, Gilliam J, Han P, Lee KA, Wikelski M (2005) Corticosterone suppresses immune function in temperate but not tropical house sparrows, Passer domesticus. Gen Comp Endocrinol 140:126–135. doi:10.1016/j.ygcen.2004.10.010

    Article  CAS  Google Scholar 

  • Martin LB, Hasselquist D, Wikelski M (2006a) Immune investments are linked to pace of life in house sparrows. Oecologia 147:565–575. doi:10.1007/s00442-005-0314-y

    Article  PubMed  Google Scholar 

  • Martin LB, Han P, Lewittes J, Kuhlman JR, Klasing KC, Wikelski M (2006b) Phytohaemagglutinin (PHA) induced skin swelling in birds: histological support for a classic immunoecological technique. Funct Ecol 20:290–300. doi:10.1111/j.1365-2435.2006.01094.x

    Article  Google Scholar 

  • Masero JA (2002) Why don’t Red Knots Calidris canutus feed extensively on the crustacean Artemia? Bird Study 49:304–306

    Article  Google Scholar 

  • Matozzo V, Monari M, Foschi J, Serrazanetti GP, Cattani O, Marin MG (2007) Effects of salinity on the clam Chamelea gallina. Part I: alterations in immune responses. Mar Biol 151:1051–1058. doi:10.1007/s00227-006-0543-6

    Article  Google Scholar 

  • McCormick SD, Bradshaw D (2006) Hormonal control of salt and water balance in vertebrates. Gen Comp Endocrinol 147:3–8. doi:10.1016/j.ygcen.2005.12.009

    Article  PubMed  CAS  Google Scholar 

  • McEwen B, Biron C, Brunson K, Bulloch K, Chambers W, Dhabhar F, Goldfarb R, Kitson R, Miller A, Spencer R, Weiss J (1997) The role of adrenalcorticoids as modulators of immune function in health and disease: neural, endocrine, and immune interactions. Brain Res Rev 23:79–133

    Article  PubMed  CAS  Google Scholar 

  • McNab BK (2002) The physiological ecology of vertebrates. A view from energetics. Cornell University Press, Ithaca

    Google Scholar 

  • Meissner W (2009) A classification scheme for scoring subcutaneous fat depots of shorebirds. J Field Ornithol 80:289–296. doi:10.1111/j.1557-9263.2009.00232.x

    Article  Google Scholar 

  • Mendes L, Piersma T, Lecoq M, Spaans B, Ricklefs RE (2005) Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos 109:396–404

    Article  Google Scholar 

  • Mendes L, Piersma T, Hasselquist D, Matson KD, Ricklefs RE (2006) Variation in the innate and acquired arms of the immune system among five shorebird species. J Exp Biol 209:284–291. doi:10.1242/jeb.02015

    Article  PubMed  Google Scholar 

  • Merino S, Martínez J, Møller AP, Sanabria L, De Lope F, Pérez J, Rodríguez-Caabeiro F (1999) Phytohaemagglutinin injection assay and physiological stress in nestling house martins. Anim Behav 58:219–222

    Article  PubMed  Google Scholar 

  • Nilsson JÅ, Granbom M, Råberg L (2007) Does the strength of an immune response reflect its energetic cost? J Avian Biol 38:488–494. doi:10.1111/j.2007.0908-8857.03919.x

    Google Scholar 

  • Nyström KGK, Pehrsson O (1988) Salinity as a constraint affecting food and habitat choice of mussel-feeding diving ducks. Ibis 130:94–110. doi:10.1111/j.1474-919X.1988.tb00960.x

    Article  Google Scholar 

  • Ortiz RM (2001) Osmoregulation in marine mammals. J Exp Biol 204:1831–1844

    PubMed  CAS  Google Scholar 

  • Owen-Ashley NT, Wingfield JC (2007) Acute phase responses of passerine birds: characterization and seasonal variation. J Ornithol 148:S583–S591. doi:10.1007/s10336-007-0197-2

    Article  Google Scholar 

  • Peaker M, Linzell JL (1975) Salt glands in birds and reptiles. Cambridge University Press, Cambridge

    Google Scholar 

  • Piersma T (1997) Do global patterns of habitat use and migration strategies co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure? Oikos 80:623–631

    Article  Google Scholar 

  • Piersma T (2002) Energetic bottlenecks and other design constraints in avian annual cycles. Integr Comp Biol 42:51–67

    Article  PubMed  Google Scholar 

  • Piersma T, van Gils J, Wiersma P (1996) Family Scolopacidae (sandpipers, snipes and phalaropes). In: del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world, vol 3., Hoatzin to Auks. Lynx, Barcelona, pp 444–533

    Google Scholar 

  • Poulin R, Mouritsen KN (2006) Climate change, parasitism and the structure of intertidal ecosystems. J Helminthol 80:183–191

    Article  PubMed  CAS  Google Scholar 

  • Purdue JR, Haines H (1977) Salt water tolerance and water turnover in the Snowy Plover. Auk 94:248–255

    Google Scholar 

  • Quillfeldt P, Arriero E, Martínez J, Masello JF, Merino S (2011) Prevalence of blood parasites in seabirds—a review. Front Zool 8:26

    Article  PubMed  Google Scholar 

  • Råberg L, Grahn M, Hasselquist D, Svensson E (1998) On the adaptive significance of stress-induced immunosuppression. Proc R Soc Lond B 265:1637–1641. doi:10.1098/rspb.1998.0482

    Article  Google Scholar 

  • Sabat P (2000) Birds in marine and saline environments: living in dry habitats. Rev Chil Hist Nat 73:401–410. doi:10.1007/s00442-006-0377-4

    Google Scholar 

  • Sapolsky RM (1992) Neuroendocrinology of the stress-response. In: Becker JB, Breedlove SM, Crews D (eds) Behavioral endocrinology. MIT Press, Cambridge, pp 287–324

    Google Scholar 

  • Sapolsky R, Romero L, Munck A (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K (1997) Animal physiology: adaptation and environment. Cambridge University Press, New York

    Google Scholar 

  • Schmidt-Nielsen K, Kim TY (1964) The effect of salt intake on the size and function of the salt gland of ducks. Auk 81:160–172

    Article  Google Scholar 

  • Skadhauge E (1981) Osmoregulation in birds. Springer, Berlin

    Book  Google Scholar 

  • Smits JE, Bortolotti GR, Tella JL (1999) Simplifying the phytohaemagglutinin skin-testing technique in studies of avian immunocompetence. Funct Ecol 13:567–572

    Article  Google Scholar 

  • Staaland H (1967) Anatomical and physiological adaptations of the nasal glands in Charadriiformes birds. Comp Biochem Physiol 23:933–944

    Article  PubMed  CAS  Google Scholar 

  • Tella JL, Lemus JA, Carrete M, Blanco G (2008) The PHA test reflects acquired T-cell mediated immunocompetence in birds. PLoS One 3:e3295. doi:10.1371/journal.pone.0003295

    Article  PubMed  Google Scholar 

  • Tietje WD, Teer JG (1996) Winter feeding ecology of northern shovelers on freshwater and saline wetlands in south Texas. J Wildl Manag 60:843–855

    Article  Google Scholar 

  • Verhulst S, Riedstra B, Wiersma P (2005) Brood size and immunity costs in zebra finches Taeniopygia guttata. J Avian Biol 36:22–30. doi:10.1111/j.0908-8857.2005.03342.x

    Article  Google Scholar 

  • Vinkler M, Bainova H, Albrecht T (2010) Functional analysis of the skin-swelling response to phytohaemagglutinin. Funct Ecol 24:1081–1086. doi:10.1111/j.1365-2435.2010.01711.x

    Article  Google Scholar 

  • Vinkler M, Albrecht T (2011) Handling ‘immunocompetence’ in ecological studies: do we operate with confused terms? J Avian Biol 42:490–493. doi:10.1111/j.1600-048X.2011.05499.x

    Article  Google Scholar 

  • Warnock N, Elphick C, Rubega MA (2002) Shorebirds in the marine environment. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, New York, pp 581–615

    Google Scholar 

  • Willmer P, Stone G, Johnston I (2005) Environmental physiology of animals. Blackwell, Oxford

    Google Scholar 

Download references

Acknowledgments

We thank Juan G. Navedo for assistance in the field. Birds were captured with permits from Junta de Extremadura (permit no. CN0001/10/AAN). Project CGL2011-27485 (Spanish Ministry of Science and Innovation) and a grant to J.S.G. from Junta of Extremadura provided financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge S. Gutiérrez.

Additional information

Communicated by Oliver Love.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez, J.S., Abad-Gómez, J.M., Villegas, A. et al. Effects of salinity on the immune response of an ‘osmotic generalist’ bird. Oecologia 171, 61–69 (2013). https://doi.org/10.1007/s00442-012-2405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2405-x

Keywords

Navigation