Skip to main content

Advertisement

Log in

Increasing nitrogen deposition enhances post-drought recovery of grassland productivity in the Mongolian steppe

Oecologia Aims and scope Submit manuscript

Abstract

Arid regions are prone to drought because annual rainfall accumulation depends on a few rainfall events. Natural plant communities are damaged by drought, but atmospheric nitrogen (N) deposition may enhance the recovery of plant productivity after drought. Here, we investigated the effect of increasing N deposition on post-drought recovery of grassland productivity in the Mongolian steppe, and we examined the influence of grazing in this recovery. We added different amounts of N to a Mongolian grassland during two sequential drought years (2006 and 2007) and the subsequent 3 years of normal rainfall (2008–2010) under grazed and nongrazed conditions. Aboveground biomass and number of shoots were surveyed annually for each species. Nitrogen addition increased grassland productivity after drought irrespective of the grazing regime. The increase in grassland productivity was associated with an increase in the size of an annual, Salsola collina, under grazed conditions, and with an increase in shoot emergence of a perennial, Artemisia adamsii, under nongrazed conditions. The addition of low N content simulating N deposition around the study area by the year 2050 did not significantly increase grassland productivity. Our results suggest that increasing N deposition can enhance grassland recovery after a drought even in arid environments, such as the Mongolian steppe. This enhancement may be accompanied by a loss of grassland quality caused by an increase in the unpalatable species A. adamsii and largely depends on future human activities and the consequent deposition of N in Mongolia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Aerts R, Bobbink R (1999) The impact of atmospheric nitrogen deposition on vegetation processes in terrestrial nonforest ecosystems. In: Langan SJ (ed) The impact of nitrogen deposition on natural and semi-natural ecosystems. Kluwer, Dordrecht, pp 85–122

    Google Scholar 

  • Aklilu Y, Wekesa M (2001) Livestock and livelihoods in emergencies: lessons learnt from the 1999–2001 emergency response in the pastoral sector in Kenya. OAU-IBAR and Tufts University, Nairobi and Medford

    Google Scholar 

  • Asian Development Bank (2005) Mongolia: country environmental analysis. Asian Development Bank, Manila

    Google Scholar 

  • Bai Y, Wu J, Clark CM, Naeem S, Pan Q, Huang J, Zhang L, Guohan X (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Glob Change Biol 16:358–372

    Article  Google Scholar 

  • Bartolome JW, Fehmi JS, Jackson RD, Allen-Diaz B (2004) Response of a native perennial grass stand to disturbance in California’s coast range grassland. Restor Ecol 12:279–289

    Article  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    Article  PubMed  CAS  Google Scholar 

  • Breshears DD, Whicker JJ, Zou CB, Field JP, Allen CD (2009) A conceptual framework for dryland aeolian sediment transport along the grassland-forest continuum: effects of woody plant canopy cover and disturbance. Geomorphology 105:28–38

    Article  Google Scholar 

  • Chen Q, Hooper DU, Lin S (2011) Shifts in species composition constrain restoration of overgrazed grassland using nitrogen fertilization in Inner Mongolian steppe, China. PLoS ONE 6:e16909

    Article  PubMed  CAS  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev: Clim Change 2:45–65

    Article  Google Scholar 

  • De Graaf MCC, Bobbink R, Roelofs JGM, Verbeek PJM (1998) Differential effects of ammonium and nitrate on three heathland species. Plant Ecol 135:185–196

    Article  Google Scholar 

  • Dentener FJ (2006) Global maps of atmospheric nitrogen deposition, 1860, 1993, and 2050. Data set. Oak Ridge National Laboratory Distributed Active Achieve Center, Oak Ridge (http://daac.ornl.gov/)

  • Diaz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007) Plant trait responses to grazing—a global synthesis. Glob Change Biol 13:313–341

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  PubMed  Google Scholar 

  • Fernandez-Gimenez M, Allen-Diaz B (2001) Vegetation change along gradients from water sources in three grazed Mongolian ecosystems. Plant Ecol 157:101–118

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Chen Q, Lin S, Giese M, Brueck H (2011) Resource manipulation effects on net primary production, biomass allocation and rain-use efficiency of two semiarid grassland sites in Inner Mongolia, China. Oecologia 165:855–864

    Article  PubMed  Google Scholar 

  • Goldberg DE, Werner PA (1983) The effects of size of opening in vegetation and litter cover on seedling establishment of goldenrods (Solidago spp.). Oecologia 60:149–155

    Article  Google Scholar 

  • Gong X, Chen Q, Lin S, Brueck H, Dittert K, Taube F, Schnyder H (2011) Tradeoffs between nitrogen- and water-use efficiency in dominant species of the semiarid steppe of Inner Mongolia. Plant Soil 340:227–238

    Article  CAS  Google Scholar 

  • Gough L, Osenberg CW, Gross KL, Collins SL (2000) Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos 89:428–439

    Article  Google Scholar 

  • Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  PubMed  CAS  Google Scholar 

  • Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry 46:247–293

    CAS  Google Scholar 

  • Hornung M, Langan SJ (1999) Nitrogen deposition: sources, impacts and responses in natural and semi-natural ecosystems. In: Langan SJ (ed) The impact of nitrogen deposition on natural and semi-natural ecosystems. Kluwer, Dordrecht, pp 1–13

    Google Scholar 

  • IPCC (2007) Fourth Assessment Report, Climate Change 2007: Synthesis Report. Cambridge University Press, Cambridge

    Google Scholar 

  • Jigjidsuren S, Johnson DA (2003) Forage plants of Mongolia. Admon, Ulaanbaatar

    Google Scholar 

  • Johnson DA, Sheehy DP, Miller D, Damiran D (2006) Mongolian rangelands in transition. Secheresse 17:133–141

    Google Scholar 

  • Karssen C (1967) The light promoted germination of the seeds of Chenopodium album L. 1. The influence of the incubation time on quality and rate of the response to red light. Acta Bot Neerland 16:156–161

    Google Scholar 

  • Le Houèrou HN (1996) Climate change, drought and desertification. J Arid Environ 34:133–185

    Article  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Li J, Lin S, Taube F, Pan Q, Dittert K (2011) Above and belowground net primary productivity of grassland influenced by supplemental water and nitrogen in Inner Mongolia. Plant Soil 340:253–264

    Article  CAS  Google Scholar 

  • Loeser MRR, Sisk TD, Crews TE (2007) Impact of grazing intensity during drought in an Arizona grassland. Conserv Biol 21:87–97

    Article  PubMed  Google Scholar 

  • Lu CQ, Tian HQ (2007) Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data. J Geophys Res 112:D22S05. doi:10.1029/2006JD007990

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391:202–216

    Article  Google Scholar 

  • Newman EI (1973) Competition and diversity in herbaceous vegetation. Nature 244:310

    Article  Google Scholar 

  • Pearson J, Stewart GR (1993) The deposition of atmospheric ammonia and its effects on plants. New Phytol 125:283–305

    Article  CAS  Google Scholar 

  • Pettit NE, Froend RH (2001) Long-term changes in the vegetation after the cessation of livestock grazing in Eucalyptus marginata (jarrah) woodland remnants. Austral Ecol 26:22–31

    Article  Google Scholar 

  • Rao L, Allen E (2010) Combined effects of precipitation and nitrogen deposition on native and invasive winter annual production in California deserts. Oecologia 162:1035–1046

    Article  PubMed  Google Scholar 

  • Ronnenberg K, Wesche K (2011) Effects of fertilization and irrigation on productivity, plant nutrient contents and soil nutrients in southern Mongolia. Plant Soil 340:239–251

    Article  CAS  Google Scholar 

  • Ronnenberg K, Hensen I, Wesche K (2011) Contrasting effects of precipitation and fertilization on seed viability and production of Stipa krylovii in Mongolia. Basic Appl Ecol 12:141–151

    Article  Google Scholar 

  • Shinoda M, Nachinshonhor GU, Nemoto M (2010a) Impact of drought on vegetation dynamics of the Mongolian steppe: a field experiment. J Arid Environ 74:63–69

    Article  Google Scholar 

  • Shinoda M, Kimura R, Mikami M, Tsubo M, Nishihara E, Ishizuka M, Yamada Y, Munkhtsetseg E, Jugder D, Kurosaki Y (2010b) Characteristics of dust emission in the Mongolian steppe during the 2008 DUVEX intensive observational period. Sola 6:9–12

    Article  Google Scholar 

  • Sternberg T (2008) Environmental challenges in Mongolia’s dryland pastoral landscape. J Arid Environ 72:1294–1304

    Article  Google Scholar 

  • Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879

    Article  PubMed  CAS  Google Scholar 

  • Stevens CJ, Duprë C, Dorland E, Gaudnik C, Gowing DJG, Bleeker A, Diekmann M, Alard D, Bobbink R, Fowler D, Corcket E, Mountford JO, Vandvik V, Aarrestad PA, Muller S, Dise NB (2010) Nitrogen deposition threatens species richness of grasslands across Europe. Environ Pollut 158:2940–2945

    Article  PubMed  CAS  Google Scholar 

  • Stevens CJ, Duprè C, Gaudnik C, Dorland E, Dise N, Gowing D, Bleeker A, Alard D, Bobbink R, Fowler D, Vandvik V, Corcket E, Mountford JO, Aarrestad PA, Muller S, Diekmann M (2011a) Changes in species composition of European acid grasslands observed along a gradient of nitrogen deposition. J Veg Sci 22:207–215

    Article  Google Scholar 

  • Stevens CJ, Manning P, van den Berg LJL, de Graaf MCC, Wamelink GWW, Boxman AW, Bleeker A, Vergeer P, Arroniz-Crespo M, Limpens J, Lamers LPM, Bobbink R, Dorland E (2011b) Ecosystem responses to reduced and oxidised nitrogen inputs in European terrestrial habitats. Environ Pollut 159:665–676

    Article  PubMed  CAS  Google Scholar 

  • Van Den Berg LJL, Peters CJH, Ashmore MR, Roelofs JGM (2008) Reduced nitrogen has a greater effect than oxidised nitrogen on dry heathland vegetation. Environ Pollut 154:359–369

    Article  PubMed  Google Scholar 

  • Vincent EM, Roberts EH (1977) Interaction of light, nitrate and alternating temperature in promoting germination of dormant seeds of common weed species. Seed Sci Technol 5:659–670

    CAS  Google Scholar 

  • Vincent EM, Roberts EH (1979) Influence of chilling, light and nitrate on the germination of dormant seeds of common weed species. Seed Sci Technol 7:3–14

    Google Scholar 

  • Vitousek PM, Aber JD, Howarth RH, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: Source and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Vitousek PM, Hattenschwiler S, Olander L, Allison S (2002) Nitrogen and nature. Ambio 31:97–101

    PubMed  Google Scholar 

  • Vostokova EA, Gunin PD (2005) Ecosystems of Mongolia. Russian Academy of Sciences, Moscow

    Google Scholar 

  • Wesche K, Ronnenberg K (2010) Effects of NPK fertilisation in arid southern Mongolian desert steppes. Plant Ecol 207:93–105

    Article  Google Scholar 

  • Wolfe SA, Nickling WG (1993) The protective role of sparse vegetation in wind erosion. Prog Phys Geogr 17:50–68

    Article  Google Scholar 

  • Xia J, Wan S (2008) Global response patterns of terrestrial plant species to nitrogen addition. New Phytol 179:428–439

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara Y, Chimeddorj B, Buuveibaatar B (2009) Heavy grazing constraints on foraging behavior of Mongolian livestock. Grassl Sci 55:29–35

    Article  Google Scholar 

Download references

Acknowledgments

We thank T. Ganbold, T. Batoyun, G.U. Nachinshonhor, Y. Purevdorj, E. Nishihara, T. Kawai, T. Nakano, Y. Suzuyama, and N. Tsuchihashi for their kind help during the field survey. Comments of Dr. T. Hirose, Tokyo University of Agriculture, helped improve this manuscript. We thank two anonymous reviewers for constructive comments on an earlier version of the manuscript, as well as Dr. C. Körner, University of Basel, and Dr. M. Bustamante, University of Brasilia, for useful comments and for editing the manuscript. This work was supported in part by a Grant-in-Aid for Young Scientists (B) by the Ministry of Education, Culture, Sports, Science and Technology, Japan [18770016].

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Kinugasa.

Additional information

Communicated by Mercedes Bustamante.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinugasa, T., Tsunekawa, A. & Shinoda, M. Increasing nitrogen deposition enhances post-drought recovery of grassland productivity in the Mongolian steppe. Oecologia 170, 857–865 (2012). https://doi.org/10.1007/s00442-012-2354-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2354-4

Keywords

Navigation