Skip to main content

Advertisement

Log in

Litter evenness influences short-term peatland decomposition processes

  • Ecosystem ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

There is concern that changes in climate and land use could increase rates of decomposition in peatlands, leading to release of stored C to the atmosphere. Rates of decomposition are driven by abiotic factors such as temperature and moisture, but also by biotic factors such as changes in litter quality resulting from vegetation change. While effects of litter species identity and diversity on decomposition processes are well studied, the impact of changes in relative abundance (evenness) of species has received less attention. In this study we investigated effects of changes in short-term peatland plant species evenness on decomposition in mixed litter assemblages, measured as litter weight loss, respired CO2 and leachate C and N. We found that over the 307-day incubation period, higher levels of species evenness increased rates of decomposition in mixed litters, measured as weight loss and leachate dissolved organic N. We also found that the identity of the dominant species influenced rates of decomposition, measured as weight loss, CO2 flux and leachate N. Greatest rates of decomposition were when the dwarf shrub Calluna vulgaris dominated litter mixtures, and lowest rates when the bryophyte Pleurozium schreberi dominated. Interactions between evenness and dominant species identity were also detected for litter weight loss and leachate N. In addition, positive non-additive effects of mixing litter were observed for litter weight loss. Our findings highlight the importance of changes in the evenness of plant community composition for short-term decomposition processes in UK peatlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aerts R, Verhoeven JTA, Whigham DF (1999) Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80:2170–2181

    Article  Google Scholar 

  • Anderson JM, Ineson P (1982) A soil microcosm system and its application to measurements of respiration and nutrient leaching. Soil Biol Biochem 14:415–416

    Article  Google Scholar 

  • Ayres E, Steltzer H, Berg S, Wall DH (2009) Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them. J Ecol 97:901–912

    Article  Google Scholar 

  • Ball BA, Hunter MD, Kominoski JS, Swan CM, Bradford MA (2008) Consequences of non-random species loss for decomposition dynamics: experimental evidence for additive and non-additive effects. J Ecol 96:303–313

    Article  Google Scholar 

  • Bardgett RD (2005) The biology of soil. A community and ecosystem approach. Oxford University Press, Oxford

    Google Scholar 

  • Bardgett RD, Shine A (1999) Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biol Biochem 31:317–321

    Article  CAS  Google Scholar 

  • Bardgett RD, Marsden JH, Howard DC (1995) The extent and condition of heather on moorland in the uplands of England and Wales. Biol Conserv 71:155–161

    Article  Google Scholar 

  • Bardgett RD, Streeter TC, Bol R (2003) Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands. Ecology 84:1277–1287

    Article  Google Scholar 

  • Begon M, Harper JL, Townsend CR (1996) Ecology. Blackwell Science, Oxford

    Google Scholar 

  • Blair JM, Parmelee RW, Beare MH (1990) Decay-rates, nitrogen fluxes, and decomposer communities of single-species and mixed-species foliar litter. Ecology 71:1976–1985

    Article  Google Scholar 

  • Bubier J, Crill P, Mosedale A, Frolking S, Linder E (2003) Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers. Glob Biogeochem Cycles 17(2):1066. doi:10.1029/2002GB001946

    Article  Google Scholar 

  • Cornelissen JHC, van Bodegom PM, Aerts R, Callaghan TV, van Logtestijn RSP, Alatalo J, Chapin FS, Gerdol R, Gudmundsson J, Gwynn-Jones D, Hartley AE, Hik DS, Hofgaard A, Jonsdottir IS, Karlsson S, Klein JA, Laundre J, Magnusson B, Michelsen A, Molau U, Onipchenko VG, Quested HM, Sandvik SM, Schmidt IK, Shaver GR, Solheim B, Soudzilovskaia NA, Stenstrom A, Tolvanen A, Totland O, Wada N, Welker JM, Zhao XQ (2007a) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10:619–627

    Article  PubMed  Google Scholar 

  • Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ (2007b) Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot 99:987–1001

    Article  CAS  PubMed  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaierett MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531

    Article  PubMed  Google Scholar 

  • DeLuca TH, Nilsson MC, Zachrisson O (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920

    Article  CAS  PubMed  Google Scholar 

  • Dickson TL, Wilsey BJ (2009) Biodiversity and tallgrass prairie decomposition: the relative importance of species identity, evenness, richness and micro-topography. Plant Ecol 201:639–649

    Article  Google Scholar 

  • Dorrepaal E, Toet S, van Logtestijn RSP, Swart E, van de Weg MJ, Callaghan TV, Aerts R (2009) Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460:616–620

    Article  CAS  Google Scholar 

  • Freeman C, Fenner N, Ostle NJ, Kang H, Dowrick DJ, Reynolds B, Lock MA, Sleep D, Hughes S, Hudson J (2004) Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430:195–198

    Article  CAS  PubMed  Google Scholar 

  • Golovatskaya EA, Dyukarev EA (2009) Carbon budget of oligotrophic mire sites in the Southern Taiga of Western Siberia. Plant Soil 315:19–34

    Article  CAS  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Syst 36:191–218

    Article  Google Scholar 

  • Hector A, Beale AJ, Minns A, Otway SJ, Lawton JH (2000) Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos 90:357–371

    Article  Google Scholar 

  • Heikkinen JEP, Maljanen M, Aurela M, Hargreaves KJ, Martikainen PJ (2002) Carbon dioxide and methane dynamics in a sub-Arctic peatland in northern Finland. Polar Res 21:49–62

    Article  Google Scholar 

  • Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89:1510–1520

    Google Scholar 

  • Hobbie SE (1992) Effects of plant-species on nutrient cycling. Trends Ecol Evol 7:336–339

    Article  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Article  Google Scholar 

  • Holland EA, Robertson GP, Greenberg J, Groffman PM, Boone RD, Gosz JR (1999) Soil CO2, N2O, and CH4 exchange. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, Oxford, pp 185–201

    Google Scholar 

  • Huston MA (1994) Biological diversity. The coexistance of species on changing landscapes. Cambridge University Press, UK

    Google Scholar 

  • Immirzi CP, Maltby E, Clymo RS (1992) The global status of peatlands and their role in carbon cycling. A report for Friends of the Earth by the Wetland Ecosystems Research Group. Friends of the Earth Trust, London

    Google Scholar 

  • Johnson LC, Shaver GR, Cades DH, Rastetter E, Nadelhoffer K, Giblin A, Laundre J, Stanley A (2000) Plant carbon-nutrient interactions control CO2 exchange in Alaskan wet sedge tundra ecosystems. Ecology 81:453–469

    Google Scholar 

  • Jonsson M, Wardle DA (2008) Context dependency of litter-mixing effects on decomposition and nutrient release across a long-term chronosequence. Oikos 117:1674–1682

    Article  Google Scholar 

  • King RF, Dromph KM, Bardgett RD (2002) Changes in species evenness of litter have no effect on decomposition processes. Soil Biol Biochem 34:1959–1963

    Article  CAS  Google Scholar 

  • Kirwan L, Luescher A, Sebastia MT, Finn JA, Collins RP, Porqueddu C, Helgadottir A, Baadshaug OH, Brophy C, Coran C, Dalmannsdottir S, Delgado I, Elgersma A, Fothergill M, Frankow-Lindberg BE, Golinski P, Grieu P, Gustavsson AM, Hoglind M, Huguenin-Elie O, Iliadis C, Jorgensen M, Kadziuliene Z, Karyotis T, Lunnan T, Malengier M, Maltoni S, Meyer V, Nyfeler D, Nykanen-Kurki P, Parente J, Smit HJ, Thumm U, Connolly J (2007) Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. J Ecol 95:530–539

    Article  Google Scholar 

  • Lang SI, Cornelissen JHC, Klahn T, van Logtestijn RSP, Broekman R, Schweikert W, Aerts R (2009) An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. J Ecol 97:886–900

    Article  CAS  Google Scholar 

  • Latter PM, Howson G, Howard DM, Scott WA (1998) Long-term study of litter decomposition on a Pennine peat bog: which regression? Oecologia 113:94–103

    Article  Google Scholar 

  • Limpens J, Berendse F (2003) How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos 103:537–547

    Article  CAS  Google Scholar 

  • Mattingly WB, Hewlate R, Reynolds HL (2007) Species evenness and invasion resistance of experimental grassland communities. Oikos 116:1164–1170

    Article  Google Scholar 

  • McNamara NP, Plant T, Oakley S, Ward S, Wood C, Ostle N (2008) Gully hotspot contribution to landscape methane (CH4) and carbon dioxide (CO2) fluxes in a northern peatland. Sci Total Environ 404:354–360

    Article  CAS  PubMed  Google Scholar 

  • McTiernan KB, Ineson P, Coward PA (1997) Respiration and nutrient release from tree leaf litter mixtures. Oikos 78:527–538

    Article  Google Scholar 

  • Moore TR, Bubier JL, Frolking SE, Lafleur PM, Roulet NT (2002) Plant biomass and production and CO2 exchange in an ombotrophic bog. J Ecol 67:789–807

    Google Scholar 

  • Moore TR, Trofymow JA, Siltanen M, Kozak LM (2008) Litter decomposition and nitrogen and phosphorus dynamics in peatlands and uplands over 12 years in central Canada. Oecologia 157:317–325

    Article  PubMed  Google Scholar 

  • Mulder CPH, Bazeley-White E, Dimitrakopoulos PG, Hector A, Scherer-Lorenzen M, Schmid B (2004) Species evenness and productivity in experimental plant communities. Oikos 107:50–63

    Article  Google Scholar 

  • Prescott CE (2005) Do rates of litter decomposition tell us anything we really need to know? For Ecol Manage 220:66–74

    Article  Google Scholar 

  • Rawes M, Heal OW (1978) The blanket bog as part of a Pennine moorland. In: Heal OW, Perkins DF (eds) Production ecology of British moors and montane grasslands. Springer, Berlin, pp 224–243

    Google Scholar 

  • Rodwell JS (1991) British plant communities. Mires and heaths, vol 2. Cambridge University Press, Cambridge

    Google Scholar 

  • Ross DJ (1992) Influence of sieve mesh size on estimates of microbial carbon and nitrogen by fumigation-extraction procedures in soils under pasture. Soil Biol Biochem 24:343–350

    Article  Google Scholar 

  • Roulet NT, Lafleurs PM, Richard PJH, Moore TR, Humphreys ER, Bubier J (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob Change Biol 13:397–411

    Article  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85(3):591–602

    Article  Google Scholar 

  • Smith VC, Bradford MA (2003) Do non-additive effects on decomposition in litter-mix experiments result from differences in resource quality between litters? Oikos 102:235–242

    Article  Google Scholar 

  • Swan CM, Gluth MA, Horne CL (2009) Leaf litter species evenness influences nonadditive breakdown in a headwater stream. Ecology 90(6):1650–1658

    Article  CAS  PubMed  Google Scholar 

  • Trinder CJ, Artz RRE, Johnson D (2008) Contribution of plant photosynthate to soil respiration and dissolved organic carbon in a naturally recolonising cutover peatland. Soil Biol Biochem 40:1622–1628

    Article  CAS  Google Scholar 

  • Ward SE, Bardgett RD, McNamara NP, Adamson JK, Ostle NJ (2007) Long-term consequences of grazing and burning on northern peatland carbon dynamics. Ecosystems 10:1069–1083

    Article  CAS  Google Scholar 

  • Ward SE, Bardgett RD, McNamara NP, Ostle NJ (2009) Plant functional group identity influences short-term peatland ecosystem flux: evidence from a plant removal experiment. Funct Ecol 23:454–462

    Article  Google Scholar 

  • Wardle DA, Bonner KI, Nicholson KS (1997) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258

    Article  Google Scholar 

  • Wardle DA, Nilsson MC, Zackrisson O, Gallet C (2003) Determinants of litter mixing effects in a Swedish boreal forest. Soil Biol Biochem 35:827–835

    Article  CAS  Google Scholar 

  • Wilsey BJ, Potvin C (2000) Biodiversity and ecosystem functioning: importance of species evenness in an old field. Ecology 81:887–892

    Article  Google Scholar 

  • Wilsey BJ, Chalcraft DR, Bowles CM, Willig MR (2005) Relationships among indices suggest that richness is an incomplete surrogate for grassland biodiversity. Ecology 86:1178–1184

    Article  Google Scholar 

  • Zimmer M (2002) Is decomposition of woodland leaf litter influenced by its species richness? Soil Biol Biochem 34:277–284

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Jan Poskitt and Susie Fawley for assistance in the laboratory, and to Natural England for allowing us to use the field site. We also thank two anonymous referees and the Editor for helpful comments on an earlier version of this manuscript. This study was supported by a Natural Environment Research Council studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan E. Ward.

Additional information

Communicated by Tim Seastedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, S.E., Ostle, N.J., McNamara, N.P. et al. Litter evenness influences short-term peatland decomposition processes. Oecologia 164, 511–520 (2010). https://doi.org/10.1007/s00442-010-1636-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-010-1636-y

Keywords

Navigation