Skip to main content

Advertisement

Log in

Experimental examination of the effects of ultraviolet-B radiation in combination with other stressors on frog larvae

  • Global Change Ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Ultraviolet-B radiation (UVB) is a ubiquitous stressor with negative effects on many aquatic organisms. In amphibians, ambient levels of UVB can result in impaired growth, slowed development, malformations, altered behavior and mortality. UVB can also interact with other environmental stressors to amplify these negative effects on individuals. In outdoor mesocosm and laboratory experiments we studied potential synergistic effects of UVB, a pathogenic fungus, Batrachochytrium dendrobatidis (Bd), and varying temperatures on larval Cascades frogs (Rana cascadae). First, we compared survivorship, growth and development in two mesocosm experiments with UVB- and Bd-exposure treatments. We then investigated the effects of UVB on larvae in the laboratory under two temperature regimes, monitoring survival and behavior. We found reduced survival of R. cascadae larvae with exposure to UVB radiation in all experiments. In the mesocosm experiments, growth and development were not affected in either treatment, and no effect of Bd was found. In the laboratory experiment, larvae exposed to UVB demonstrated decreased activity levels. We also found a trend towards reduced survival when UVB and cold temperatures were combined. Our results show that amphibian larvae can suffer both lethal and sublethal effects when exposed to UVB radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andre SE, Parker J, Briggs CJ (2008) Effect of temperature on host response to Batrachochytrium dendrobatidis infection in the mountain yellow-legged frog (Rana muscosa). J Wildl Dis 44:716–720

    PubMed  Google Scholar 

  • Ankley GT, Diamond SA, Tietge JE, Holcombe GW, Jensen KM, Defoe DL, Peterson R (2002) Assessment of the risk of solar ultraviolet radiation to amphibians. I. Dose-dependent induction of hindlimb malformations in the northern leopard frog (Rana pipiens). Environ Sci Technol 36:2853–2858

    Article  CAS  PubMed  Google Scholar 

  • Bancroft BA, Baker NJ, Blaustein AR (2007) Effects of UVB radiation on marine and freshwater organisms: a synthesis through meta-analysis. Ecol Lett 10:332–345

    Article  PubMed  Google Scholar 

  • Bancroft BA, Baker NJ, Blaustein AR (2008a) A meta-analysis of the effects of ultraviolet B radiation and its synergistic interactions with pH, contaminants, and disease on amphibian survival. Conserv Biol 22:987–996

    Article  PubMed  Google Scholar 

  • Bancroft BA, Baker NJ, Searle CL, Garcia TS, Blaustein AR (2008b) Larval amphibians seek warm temperatures and do not avoid harmful UVB radiation. Behav Ecol 19:879–886

    Article  Google Scholar 

  • Belden LK, Moore IT, Mason RT, Wingfield JC, Blaustein AR (2003) Survival, the hormonal stress response and UV-B avoidance in Cascades frog tadpoles (Rana cascadae) exposed to UV-B radiation. Funct Ecol 17:409–416

    Article  Google Scholar 

  • Berger L, Marantelli G, Skerratt LF, Speare R (2005) Virulence of the amphibian chytrid fungus Batrachochytrium dendrobatidis varies with the strain. Dis Aquat Organ 68:47–50

    Article  PubMed  Google Scholar 

  • Blaustein AR, Hoffman PD, Hokit DG, Kiesecker JM, Walls SC, Hays JB (1994) UV repair and resistance to solar UV-B in amphibian eggs: a link to population declines? Proc Natl Acad Sci USA 91:1791–1795

    Article  CAS  PubMed  Google Scholar 

  • Blaustein AR, Romansic JM, Scheessele EA (2005a) Ambient levels of ultraviolet-B radiation cause mortality in juvenile western toads, Bufo boreas. Am Midl Nat 154:375–382

    Article  Google Scholar 

  • Blaustein AR, Romansic JM, Scheessele EA, Han BA, Pessier AP, Longcore JE (2005b) Interspecific variation in susceptibility of frog tadpoles to the pathogenic fungus Batrachochytrium dendrobatidis. Conserv Biol 19:1460–1468

    Article  Google Scholar 

  • Bosch J, Carrascal LM, Durán L, Walker S, Fisher MC (2007) Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain; is there a link? Proc R Soc B Biol Sci 274:253–260

    Article  Google Scholar 

  • Bothwell M, Sherbot DMJ, Pollock SM (1994) Ecosystem response to solar ultraviolet-B radiation: influence of trophic-level interactions. Science 265:97–100

    Article  CAS  PubMed  Google Scholar 

  • Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Organ 60:141–148

    Article  CAS  PubMed  Google Scholar 

  • Brattstrom BH (1979) Amphibian temperature regulation studies in the field and laboratory. Am Zool 19:345–356

    CAS  Google Scholar 

  • Carey C, Bruzgul JE, Livo LJ, Walling ML, Kuehl KA, Dixon BF, Pessier AP, Alford RA, Rogers KB (2006) Experimental exposures of boreal toads (Bufo boreas) to a pathogenic chytrid fungus (Batrachochytrium dendrobatidis). EcoHealth 3:5–21

    Article  Google Scholar 

  • Chatila K, Demers S, Mostajir B, Gosselin M, Chanut JP, Monfort P (1999) Bacterivory of a natural heterotrophic protozoan community exposed to different intensities of ultraviolet-B radiation. Aquat Microb Ecol 20:59–74

    Article  Google Scholar 

  • Croteau MC, Davidson MA, Lean DRS, Trudeau VL (2008) Global increases in ultraviolet B radiation: potential impacts on amphibian development and metamorphosis. Physiol Biochem Zool 81:743–761

    Article  CAS  PubMed  Google Scholar 

  • Danilov RA, Ekelund RGA (2000) Effects of different levels of UV-B radiation on marine epilithic communities: a short-term microcosm study. Sci Mar 64:363–368

    Article  Google Scholar 

  • Dupré RK, Petranka JW (1985) Ontogeny of temperature selection in larval amphibians. Copeia 1985:462–467

    Article  Google Scholar 

  • Fellers GM, Pope KL, Stead JE, Koo MS, Welsh HH (2008) Turning population trend monitoring into active conservation: can we save the Cascade frog (Rana cascadae) in the Lassen region of California? Herpetol Conserv Biol 3:28–39

    Google Scholar 

  • Garcia TS, Romansic JM, Blaustein AR (2006) Survival of three species of anuran metamorphs exposed to UV-B radiation and the pathogenic fungus Batrachochytrium dendrobatidis. Dis Aquat Organ 72:163–169

    Article  CAS  PubMed  Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Häder DP, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6:267–285

    Article  PubMed  CAS  Google Scholar 

  • Häkkinen J, Pasanen S, Kukkonen JVK (2001) The effects of solar UV-B radiation on embryonic mortality and development in three boreal anurans (Rana temporaria, Rana arvalis and Bufo bufo). Chemosphere 44:441–446

    Article  PubMed  Google Scholar 

  • Han BA, Bradley PW, Blaustein AR (2008) Ancient behaviors of larval amphibians in response to an emerging fungal pathogen, Batrachochytrium dendrobatidis. Behav Ecol Sociobiol 63:241–250

    Article  Google Scholar 

  • Hatch AC, Blaustein AR (2003) Combined effects of UV-B radiation and nitrate fertilizer on larval amphibians. Ecol Appl 13:1083–1093

    Article  Google Scholar 

  • Hays JB, Blaustein AR, Kiesecker JM, Hoffman PD, Pandelova I, Coyle D, Richardson T (1996) Developmental responses of amphibians to solar and artificial UVB sources: a comparative study. Photochem Photobiol 64:449–456

    Article  CAS  PubMed  Google Scholar 

  • Hokit DG, Blaustein AR (1997) The effects of kinship on interactions between tadpoles of Rana cascadae. Ecology 78:1722–1735

    Google Scholar 

  • Johnson PT, Lunde KB, Thurman EM, Ritchie EG, Wray SN, Sutherland DR, Kapfer JM, Frest TJ, Bowerman J, Blaustein AR (2002) Parasite (Ribeiroia ondatrae) infection linked to amphibian malformations in the western United States. Ecol Monogr 72:151–168

    Article  Google Scholar 

  • Jones LLC, Leonard WP, Olson DH (2005) Amphibians of the Pacific Northwest. Seattle, 1st edn. Audubon Society, Seattle

    Google Scholar 

  • Kats LB, Kiesecker JM, Chivers DP, Blaustein AR (2000) Effects of UV-B radiation on anti-predator behavior in three species of amphibians. Ethology 106:921–931

    Article  Google Scholar 

  • Kiesecker JM, Blaustein AR (1995) Synergism between UV-B radiation and a pathogen magnifies amphibian embryo mortality in nature. Proc Natl Acad Sci USA 92:11049–11052

    Article  CAS  PubMed  Google Scholar 

  • Kiesecker JM, Blaustein AR, Belden LK (2001) Complex causes of amphibian population declines. Nature 410:681–684

    Article  CAS  PubMed  Google Scholar 

  • Kirk JTO (1994) Optics of UV-B radiation in natural waters. Arch Fur Hydrobiol Beiheft 43:1–16

    Google Scholar 

  • Langhelle A, Lindell MJ, Nyström P (1999) Effects of ultraviolet radiation on amphibian embryonic and larval development. J Herpetol 3:449–456

    Article  Google Scholar 

  • Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, Carey C, Livo L, Pessier AP, Collins JP (2006) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Natl Acad Sci USA 103:3165–3170

    Article  CAS  PubMed  Google Scholar 

  • Lizana M, Pedraza EM (1998) The effects of UV-B radiation on toad mortality in mountainous areas of central Spain. Conserv Biol 12:703–707

    Article  Google Scholar 

  • Long LE, Saylor LS, Soulé ME (1995) A pH/UV-B synergism in amphibians. Conserv Biol 9:1301–1303

    Google Scholar 

  • Longcore JE, Pessier AP, Nicols DK (1999) Batrachochytrium dendrobatidis gen. et. sp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219–227

    Article  Google Scholar 

  • Lucas EA, Reynolds WA (1967) Temperature selection by amphibian larvae. Physiol Zool 40:159–171

    Google Scholar 

  • Macías G, Marco A, Blaustein AR (2007) Combined exposure to ambient UVB radiation and nitrite negatively affects survival of amphibian early life stages. Sci Total Environ 385:55–65

    Article  PubMed  CAS  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. Island Press, Washington, DC

    Google Scholar 

  • Nagl AM, Hofer R (1997) Effects of ultraviolet radiation on early larval stages of the Alpine newt, Triturus alpestris, under natural and laboratory conditions. Oecologia 110:514–519

    Article  Google Scholar 

  • Newman PA, Nash ER, Kawa SR, Montzka SA, Schauffler SM (2006) When will the Antarctic ozone hole recover? Geophys Res Lett 33:L12814. doi:10.1029/2005GL025232

    Article  CAS  Google Scholar 

  • O’Hara RK, Blaustein AR (1985) Rana cascadae tadpoles aggregate with siblings: an experimental field study. Oecologia 67:44–51

    Article  Google Scholar 

  • Pahkala M, Laurila A, Merilä J (2001) Carry-over effects of ultraviolet-B radiation on larval fitness in Rana temporaria. Proc R Soc Lond B 268:1699–1706

    Article  CAS  Google Scholar 

  • Pahkala M, Räsänen K, Laurila A, Johanson U, Björn LO, Merilä J (2002) Lethal and sublethal effects of UV-B/pH synergism on common frog embryos. Conserv Biol 16:1063–1073

    Article  Google Scholar 

  • Pahkala M, Laurila A, Merilä J (2003a) Effects of ultraviolet-B radiation on behavior and growth of three species of amphibian larvae. Chemosphere 51:197–204

    Article  CAS  PubMed  Google Scholar 

  • Pahkala M, Merilä J, Ots I, Laurila A (2003b) Effects of ultraviolet-B radiation on metamorphic traits in the common frog Rana temporaria. J Zool Lond 259:57–62

    Article  Google Scholar 

  • Pang Q, Hays JB (1991) UV-B-inducible and temperature-sensitive photoreactivation of cyclobutane pyrimidine dimmers in Arabidopsis thaliana. Plant Physiol 95:536–543

    Article  CAS  PubMed  Google Scholar 

  • Parris MJ, Baud DR (2004) Interactive effects of a heavy metal and chytridiomycosis on gray treefrog larvae (Hyla chrysoscelis). Copeia 2:344–350

    Article  Google Scholar 

  • Parris MJ, Cornelius TO (2004) Fungal pathogen causes competitive and developmental stress in larval amphibian communities. Ecology 85:3385–3395

    Article  Google Scholar 

  • Piotrowski JS, Annis SL, Longcore JE (2004) Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:9–15

    Article  Google Scholar 

  • Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL, Foster PN, LaMarca E, Masters KL, Merino-Viteri A, Puschendorf R, Ron SR, Sánchez-Azofeifa GA, Still CJ, Young BE (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167

    Article  CAS  PubMed  Google Scholar 

  • Rachowicz LJ, Knapp RA, Morgan JAT, Stice MJ, Vredenburg VT, Parker JM, Briggs CJ (2006) Emerging infectious disease as a proximate cause of amphibian mass mortality. Ecology 87:1671–1683

    Article  PubMed  Google Scholar 

  • Romansic JM, Waggener AA, Bancroft BA, Blaustein AR (2009) Influence of ultraviolet-B radiation on growth, prevalence of deformities, and susceptibility to predation in Cascades frog (Rana cascadae) larvae. Hydrobiologia 624:219–233

    Article  Google Scholar 

  • Skelly K, Werner E (1990) Behavioral and life-historical responses of larval American toads to an odonate predator. Ecology 71:2313–2322

    Article  Google Scholar 

  • Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Hines HB, Kenyon N (2007) Spread of chytridiomycosis has caused rapid global decline and extinction of frogs. EcoHealth 4:125–134

    Article  Google Scholar 

  • Smith GR, Waters MA, Rettig JE (2000) Consequences of embryonic UV-B exposure for embryos and tadpoles of the Plains leopard frog. Conserv Biol 14:1903–1907

    Article  Google Scholar 

  • Solomon S (2004) The hole truth: what’s news (and what’s not) about the ozone hole. Nature 427:289–291

    Article  CAS  PubMed  Google Scholar 

  • Starnes SM, Kennedy CA, Petranka JW (2000) Sensitivity of embryos of southern Appalachian amphibians to ambient solar UV-B radiation. Conserv Biol 14:277–282

    Article  Google Scholar 

  • Tevini M (1993) UV-B radiation and ozone depletion: effects on humans, animals, plants, microorganisms, and materials, 1st edn. Lewis, Boca Raton

    Google Scholar 

  • Tietge JE, Diamond SA, Ankley GT, DeFoe DL, Holcombe GW, Jensen KM, Degitz SJ, Elonen GE, Hammer E (2001) Ambient solar UV radiation causes mortality in larvae of three species of Rana under controlled exposure conditions. Photochem Photobiol 74:261–268

    Article  CAS  PubMed  Google Scholar 

  • van de Mortel TF, Buttemer WA (1998) Avoidance of ultraviolet-B radiation in frogs and tadpoles of the species Litoria aurea, L. dentata, and L. peronii. Proc Linn Soc N S W 119:173–179

    Google Scholar 

  • van Uitregt VO, Wilson RS, Franklin CE (2007) Cooler temperatures increase sensitivity to ultraviolet B radiation in embryos and larvae of the frog Limnodynastes peronii. Glob Change Biol 13:1114–1121

    Article  Google Scholar 

  • Vonesh JR, De la Cruz O (2002) Complex life cycles and density dependence: assessing the contribution of egg mortality to amphibian declines. Oecologia 133:325–333

    Article  Google Scholar 

  • Werner EE, Anholt BR (1993) Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity. Am Nat 142:242–272

    Article  CAS  PubMed  Google Scholar 

  • Wollmuth LP, Crawshaw LI, Forbes RB, Grahn DA (1987) Temperature selection during development in a montane anuran species, Rana cascadae. Physiol Zool 60:472–480

    Google Scholar 

  • Woodhams DC, Alford RA, Marantelli G (2003) Emerging disease of amphibians cured by elevated body temperature. Dis Aquat Organ 55:65–67

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank A. Pessier, J. Spatafora, J. Romansic, J. Longcore, T. Raffel, P. Bradley, A. Searle, J. Carey, and M. Christie for their assistance. This work was supported by National Science Foundation Integrated Research Challenges in Environmental Biology (NSF IRCEB) Program (DEB0213851 and IBN9977063). Suggestions by two anonymous reviewers greatly contributed to this paper. These experiments comply with the current laws of the United States and with Oregon State University animal care regulations. Animals were collected according to Oregon Department of Fish and Wildlife regulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Laura Searle.

Additional information

Communicated by Anssi Laurila.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure (DOC 109 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Searle, C.L., Belden, L.K., Bancroft, B.A. et al. Experimental examination of the effects of ultraviolet-B radiation in combination with other stressors on frog larvae. Oecologia 162, 237–245 (2010). https://doi.org/10.1007/s00442-009-1440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1440-8

Keywords

Navigation