Skip to main content
Log in

Hover flies are efficient pollinators of oilseed rape

  • Plant-Animal Interactions - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Understanding the consequences of declining diversity and abundance of pollinators for crops and floral biodiversity is a major challenge for current conservation ecology. However, most studies on this issue focus on bees, while other invertebrate taxa are largely ignored. We investigated the pollination efficiency of the globally abundant hover fly Episyrphus balteatus on the common crop, oilseed rape (Brassica napus). The study was conducted over a period of 2 consecutive years by means of enclosure experiments at an agricultural site located in Central Hesse (Germany). E. balteatus significantly increased both seed set and yield. This effect was very constant in the 2 years, despite considerable interannual differences in total seed numbers and seed mass. It highlights the important role of hover flies as pollinators of arable crops under varying environmental conditions. In contrast to bees, the effect of E. balteatus was lower at high pollinator densities than at low pollinator densities. This suggests adverse effects of density-dependent factors on pollination efficiency at high densities. Thus, models ignoring the modulating effect of biotic interactions by generally assuming a simple positive relationship between pollinator density and pollination efficiency might not apply to a vital component of the pollinator community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen-Wardell G, Bernhardt P, Bitter R, Burquez A, Buchmann S, Cane J, Cox PA, Dalton V, Feinsinger P, Ingram M, Inouye D, Jones CE, Kennedy K, Kevan P, Koopowitz H, Medellin R, Medellin-Morales S, Nabhan GP, Pavlik B, Tepedino V, Torchio P, Walzer S (1998) The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv Biol 12:8–17

    Article  Google Scholar 

  • Bargen H, Saudhof K, Poehling HM (1998) Prey finding by larvae and adult females of Episyrphus balteatus. Entomol Exp Appl 87:245–254

    Article  Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M, Ohlemuller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354

    Article  PubMed  CAS  Google Scholar 

  • Buchmann SL, Nabhan GP (1997) The forgotten pollinators. Island Press, Washington, DC

    Google Scholar 

  • Costanza R, d’Arge R, deGroot R, Farber S, Grasso M, Hannon B, Limburg K, O’Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Daily G (1997) Nature’s services: societal dependance on natural ecosystems. Island Press, Washington, DC

    Google Scholar 

  • Diepenbrock W (2000) Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res 67:35–49

    Article  Google Scholar 

  • Enfjäll K, Leimar O (2005) Density-dependent dispersal in the Glanville fritillary, Melitaea cinxa. Oikos 108:465–472

    Article  Google Scholar 

  • Fontaine C, Dajoz I, Meriguet J, Loreau M (2006) Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities. PLoS Biol 4:129–135

    Article  CAS  Google Scholar 

  • Frank T (1999) Density of adult hoverflies (Dipt., Syrphidae) in sown weed strips and adjacent fields. J Appl Entomol 123:351–355

    Article  Google Scholar 

  • Ghazoul J (2005) Buzziness as usual? Questioning the global pollination crisis. Trends Ecol Evol 20:367–373

    Article  PubMed  Google Scholar 

  • Goodman R, Hepworth G, Kaczynski P, McKee B, Clarke S, Bluett C (2001) Honeybee pollination of buckwheat (Fagopyrum esculentum Moench) cv. Manor. Aust J Exp Agric 41:1217–1221

    Article  Google Scholar 

  • Goulson D, Wright NP (1998) Flower constancy in the hoverflies Episyrphus balteatus (Degeer) and Syrphus ribesii (L.) (Syrphidae). Behav Ecol 9:213–219

    Article  Google Scholar 

  • Hayter KE, Cresswell JE (2006) The influence of pollinator abundance on the dynamics and efficiency of pollination in agricultural Brassica napus: implications for landscape-scale gene dispersal. J Appl Ecol 43:1196–1202

    Article  Google Scholar 

  • Hoyle M, Cresswell JE (2006) Remobilization of initially deposited pollen grains has negligible impact on gene dispersal in bumble bee-pollinated Brassica napus. Funct Ecol 20:958–965

    Article  Google Scholar 

  • Jarlan A, de Oliveira D, Gingras J (1997) Pollination by Eristalis tenax (Diptera: Syrphidae) and seed set of greenhouse sweet pepper. J Econ Entomol 90:1646–1649

    Google Scholar 

  • Kearns CA (2001) North American dipteran pollinators: assessing their value and conservation status. Conserv Ecol 5. Online URL:http://www.consecol.org/vol5/iss1/art5/

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 29:83–112

    Article  Google Scholar 

  • Kendall DA, Wilson D, Guttridge CG, Anderson HM (1971) Testing Eristalis as a pollinator of covered crops. Long Ashton Res Stn Rep 1971:120–121

    Google Scholar 

  • Klein AM, Vaissiére BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc Lond B Biol 274:303–313

    Article  Google Scholar 

  • Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad USA 99:16812–16816

    Article  CAS  Google Scholar 

  • Kremen C, Williams NM, Bugg RL, Fay JP, Thorp RW (2004) The area requirements of an ecosystem service: crop pollination by native bee communities in California. Ecol Lett 7:1109–1119

    Article  Google Scholar 

  • Kristen R (2008) Entomofauna an Raps: Verteilung, Bestäubung und ökologische Bedeutung in der Kulturlandschaft. Ph.D. thesis, Department of Animal Ecology, Justus Liebig University Giessen, Germany

  • Larson BMH, Kevan PG, Inouye DW (2001) Flies and flowers: taxonomic diversity of anthophiles and pollinators. Can Entomol 133:439–465

    Article  Google Scholar 

  • MacLeod A (1999) Attraction and retention of Episyrphus balteatus DeGeer (Diptera: Syrphidae) at an arable field margin with rich and poor floral resources. Agric Ecosyst Environ 73:237–244

    Article  Google Scholar 

  • Morandin LA, Winston ML (2005) Wild bee abundance and seed production in conventional, organic, and genetically modified canola. Ecol Appl 15:871–881

    Article  Google Scholar 

  • Morandin LA, Winston ML (2006) Pollinators provide economic incentive to preserve natural land in agroecosystems. Agric Ecosyst Environ 116:289–292

    Article  Google Scholar 

  • Nye WP, Anderson JL (1974) Insect pollinators frequenting strawberry blossoms and the effect of honeybees on yield and fruit quality. J Am Soc Hortic Sci 99:40–44

    Google Scholar 

  • Pineda A, Morales I, Marcos-García MA, Fereres A (2007) Oviposition avoidance of parasitized aphid colonies by the syrphid predator Episyrphus balteatus mediated by different cues. Biol Control 42:274–280

    Article  Google Scholar 

  • Richards AJ (2001) Does low biodiversity resulting from modern agricultural practice affect crop pollination and yield? Ann Bot Lond 88:165–172

    Article  Google Scholar 

  • Ricketts TH (2004) Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conserv Biol 18:1262–1271

    Article  Google Scholar 

  • Sahli HF, Conner JK (2006) Characterizing ecological generalization in plant-pollination systems. Oecologia 148:365–372

    Article  PubMed  Google Scholar 

  • Schittenhelm S, Gladis T, Rao VR (1997) Efficiency of various insects in germplasm regeneration of carrot, onion and turnip rape accessions. Plant Breed 116:369–375

    Article  Google Scholar 

  • Solomon ME, Kendall DA (1970) Pollination by the syrphid fly, Eristalis tenax. Long Ashton Res Stn Rep 1970:101–102

    Google Scholar 

  • Speight MCD (2006) Species accounts of European Syrphidae (Diptera), Ferrara 2006. In: Speight MCD, Castella E, Sarthou J-P, Monteil C (eds) Syrph the Net on CD, Issue 5. The database of European Syrphidae. Syrph the Net Publications, Dublin

  • Statistisches Bundesamt (2005) Land- und Forstwirtschaft. Wachstum und Ernte—Feldfrüchte. Fachserie 3/Reihe 3.2.1

  • Steffan-Dewenter I (2003) Seed set of male-sterile and male-fertile oilseed rape (Brassica napus) in relation to pollinator density. Apidologie 34:227–235

    Article  Google Scholar 

  • Steffan-Dewenter I, Potts SG, Packer L (2005) Pollinator diversity and crop pollination services are at risk. Trends Ecol Evol 20:651–652

    Article  PubMed  Google Scholar 

  • Sugiura N (1996) Pollination of the orchid Epipactis thunbergii by syrphid flies (Diptera: Syrphidae). Ecol Res 11:249–255

    Article  Google Scholar 

  • Sutherland JP, Sullivan MS, Poppy GM (2001) Distribution and abundance of aphidophagous hoverflies (Diptera: Syrphidae) in wildflower patches and field margins. Agric For Entomol 3:57–64

    Article  Google Scholar 

  • Tenhumberg B, Poehling HM (1995) Syrphids as natural enemies of cereal aphids in Germany—aspects of their biology and efficacy in different years and regions. Agric Ecosyst Environ 52:39–43

    Article  Google Scholar 

  • Vance NC, Bernhardt P, Edens RM (2004) Pollination and seed production in Xerophyllum tenax (Melanthiaceae) in the Cascade Range of Central Oregon. Am J Bot 91:2060–2068

    Article  Google Scholar 

  • Waser NM, Chittka L, Price MV, Williams N, Ollerton J (1996) Generalization in pollinator systems, and why it matters. Ecology 77:279–296

    Google Scholar 

  • Westcott L, Nelson D (2001) Canola pollination: an update. Bee World 82:115–129

    Google Scholar 

  • Westrich P (1989) Die Wildbienen Baden-Württembergs. Ulmer, Stuttgart

Download references

Acknowledgements

We thank the staff of the Rauischholzhausen field station, especially Mechthild Schwarte, for assisting in the management of the rape plants, and the Institute of Plant Breeding, Justus-Liebig-University of Giessen (Head of Department: Prof. Wolfgang Friedt) for permission to conduct this study on their field sites and for providing the flight cages. Tim Diekötter and Klaus Birkhofer provided statistical advice and valuable comments on the manuscript. James Cresswell, Birgit Meyer, and Ingolf Steffan-Dewenter made valuable comments on an earlier draft of this manuscript. This work was funded by the German Environmental Foundation (DBU) with a doctoral scholarship to F. Jauker. This study complies with the current laws of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Jauker.

Additional information

Communicated by Roland Brandl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jauker, F., Wolters, V. Hover flies are efficient pollinators of oilseed rape. Oecologia 156, 819–823 (2008). https://doi.org/10.1007/s00442-008-1034-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-008-1034-x

Keywords

Navigation