Skip to main content

Advertisement

Log in

The importance of quantifying inherent variability when interpreting stable isotope field data

  • Population Ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Stable isotope data are often used to assess diet, trophic level, trophic niche width and the extent of omnivory. Notwithstanding ongoing discussions about the value of these approaches, variations in isotopic signatures among individuals depend on inherent variability as well as differences in feeding habitats. Remarkably, the relative contributions of diet variation and inherent variability to differences in δ15N and δ13C among individuals have not been quantified for the same species at the same life history stages, and inherent variability has been ignored or assumed. We quantified inherent variability in δ13C and δ15N among individuals of a marine fish (the European sea bass, Dicentrarchus labrax) reared in a controlled environment on a diet of constant isotopic composition and compared it with variability in δ13C and δ15N among individuals from wild bass populations. The analysis showed that inherent variability among reared individuals on a controlled diet was equivalent to a large proportion of the observed variability among wild individuals and, therefore, that inherent variability should be measured to establish baseline variability in wild populations before any assumptions are made about the influence of diet. Given that inherent variability is known to be dependent on species, life history stage and the environment, our results show that it should be quantified on a case-by-case basis if diet studies are intended to provide absolute assessments of dietary habits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Araujo MS, Bolnick DI, Machado G, Giaretta AA, Dos Reis SF (2007) Using δ13C stable isotopes to quantify individual-level diet variation. Oecologia 152:643–654

    Article  PubMed  Google Scholar 

  • Badalamenti F, D’Anna G, Pinnegar JK, Polunin NVC (2002) Size-related trophodynamic changes in three target fish species recovering from intensive trawling. Mar Biol 141:561–570

    Article  Google Scholar 

  • Barnes C (2006) Factors influencing the level of stable isotope fractionation in large marine consumers. PhD thesis. School of Marine Science and Technology, Newcastle University, Newcastle

  • Barnes C, Sweeting CJ, Jennings S, Barry JT, Polunin NVC (2007) Effect of temperature and ration size on carbon and nitrogen stable isotope trophic fractionation. Funct Ecol 21:356–362

    Article  Google Scholar 

  • Bearhop S, Adams CE, Waldron S, Fuller RA, MacLeod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012

    Article  Google Scholar 

  • Darnaude AM, Salen-Picard C, Polunin NVC, Harmelin-Vivien ML (2004) Trophodynamic linkage between river runoff and coastal fishers yield elucidated by stable isotope data in the Gulf of Lions (NW Mediterranean). Oecologia 138:325–332

    Article  PubMed  Google Scholar 

  • Davenport SR, Bax NJ (2002) A trophic study of a marine ecosystem off southeastern Australia using stable isotopes of carbon and nitrogen. Can J Fish Aquat Sci 59:514–530

    Article  Google Scholar 

  • DeNiro M, Epstein S (1977) Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197:261–263

    Article  PubMed  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351

    Article  CAS  Google Scholar 

  • France RL (1997) δ15N examination of the Lindeman-Hutchinson-Peters theory of increasing omnivory with trophic height in aquatic foodwebs. Res Popul Ecol 39:121–125

    Article  Google Scholar 

  • Gorokhova E, Hansson S (1999) An experimental study on variations in stable carbon and nitrogen isotope fractionation during growth of Mysis mixta and Neomysis integer. Can J Fish Aquat Sci 56:2203–2210

    Article  Google Scholar 

  • Grey J (2001) Ontogeny and dietary specialization in brown trout (Salmo trutta L.) from Loch Ness, Scotland, examined using stable isotopes of carbon and nitrogen. Ecol Freshw Fish 10:168–176

    Article  Google Scholar 

  • Jacob U, Mintenbeck K, Brey T, Knust R, Beyer K (2005) Stable isotope food web studies: a case for standardized sample treatment. Mar Ecol Prog Ser 287:251–253

    Article  Google Scholar 

  • Jardine TD, Cunjak RA (2005) Analytical error in stable isotope ecology. Oecologia 144:528–533

    Article  PubMed  Google Scholar 

  • Jennings S, Lancaster JE, Ryland JS, Shackley SE (1991) The age structure and growth dynamics of young-of-the-year bass, Dicentrarchus labrax, populations. J Mar Biol Assoc UK 71:799–810

    Article  Google Scholar 

  • Jennings S, Renones O, MoralesNin B, Polunin NVC, Moranta J, Coll J (1997) Spatial variation in the 15N and 13C stable isotope composition of plants, invertebrates and fishes on Mediterranean reefs: Implications for the study of trophic pathways. Mar Ecol-Prog Ser 146:109–116

    Article  Google Scholar 

  • Jennings S, Pinnegar JK, Polunin NVC, Boon TW (2001) Weak cross-species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities. J Anim Ecol 70:934–944

    Article  Google Scholar 

  • Jennings S, Pinnegar JK, Polunin NVC, Warr KJ (2002) Linking size-based and trophic analyses of benthic community structure. Mar Ecol Prog Ser 226:77–85

    Article  Google Scholar 

  • Lancaster JE (1991) The feeding ecology of juvenile bass Dicentrarchus labrax (L.). PhD thesis. Marine, Environmental and Evolutionary Research Group, University College of Swansea, Swansea

  • Matthews B, Mazumder A (2004) A critical evaluation of intrapopulation variation of δ13C and isotopic evidence of individual specialization. Oecologia 140:361–371

    Article  PubMed  Google Scholar 

  • Pickett GD, Pawson MG (1994) Sea Bass-Biology, exploitation and conservation. Chapman and Hall, London

    Google Scholar 

  • Pinnegar JK, Polunin NVC (1999) Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Funct Ecol 13:225–231

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Post DM (2003) Individual variation in the timing of ontogenetic niche shifts in largemouth bass. Ecology 84:1298–1310

    Article  Google Scholar 

  • Power M, Guiguer K, Barton DR (2003) Effects of temperature on isotopic enrichment in Daphnia magna: implications for aquatic food-web studies. Rapid Commun Mass Spectrom 17:1619–1625

    Article  PubMed  CAS  Google Scholar 

  • Sweeting CJ, Polunin NVC, Jennings S (2004) Tissue and fixative dependent shifts of δ13C and δ15N in preserved ecological material. Rapid Commun Mass Spectrom 18:2587–2592

    Article  PubMed  CAS  Google Scholar 

  • Sweeting CJ, Jennings S, Polunin NVC (2005) Variance in isotopic signatures as a descriptor of tissue turnover and degree of omnivory. Funct Ecol 19:777–784

    Article  Google Scholar 

  • Sweeting CJ, Polunin NVC, Jennings S (2006) Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun Mass Spectrom 20:595–601

    Article  PubMed  CAS  Google Scholar 

  • Sweeting CJ, Barry JT, Barnes C, Polunin NVC, Jennings S (2007) Effects of body size, age and environment on diet-tissue δ15N fractionation in fishes. J Exp Mar Biol Ecol 340:1–10

    Article  CAS  Google Scholar 

  • Vander Zanden MJ, Rasmussen JB (1999) Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80:1395–1404

    Article  Google Scholar 

  • Webb SC, Hedges REM, Simpson SJ (1998) Diet quality influences the δ13C and δ15N of locusts and their biochemical components. J Exp Biol 201:2903–2911

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a NERC CASE studentship (NER/S/A/2003/11886) and CEFAS (DEFRA project M0731). We thank Stuart Hetherington at CEFAS for the daily care of the bass, Charlie Scrimgeour and all his team at SCRI and Gillian Taylor at Newcastle for the stable isotope analysis. All experiments comply with the current laws of the country in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn Barnes.

Additional information

Communicated by Roland Brandl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, C., Jennings, S., Polunin, N.V.C. et al. The importance of quantifying inherent variability when interpreting stable isotope field data. Oecologia 155, 227–235 (2008). https://doi.org/10.1007/s00442-007-0904-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-007-0904-y

Keywords

Navigation