Skip to main content
Log in

Cladocerans versus copepods: the cause of contrasting top–down controls on freshwater and marine phytoplankton

  • Concepts, Reviews, and Syntheses
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Top–down control of phytoplankton by crustacean mesozooplankton is a cornerstone of freshwater ecology. Apparently, trophic cascades are more frequently reported from freshwater than from marine plankton. We argue that this difference is real and mainly caused by biological differences at the zooplankton–phytoplankton link: cladocerans (particularly Daphnia) in the lakes and copepods in the sea. We derive these conclusions from recent literature and a number of own, similarly designed mesocosm experiments conducted in a lake, a brackish water and a marine site. In all experiments, phytoplankton were exposed to gradients of experimentally manipulated densities of zooplankton, including freshwater copepods and cladocerans, and marine copepods and appendicularians. The suggested reasons for the difference between lake and marine trophic cascades are: (1) Both copepods and cladocerans suppress only part of the phytoplankton size spectrum: cladocerans the small and copepods the large phytoplankton. (2) If not controlled by grazing, small phytoplankton may increase their biomass faster than large phytoplankton. (3) Copepods additionally release small phytoplankton from grazing pressure by intermediate consumers (protozoa) and competitors (predation on appendicularian eggs), while cladocerans do not release large phytoplankton from grazing pressure by any functional group. (4) Cladocerans sequester more of the limiting nutrient than copepods, leaving fewer nutrients available for compensatory growth of ungrazed phytoplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abreu PC, Granéli E, Odebracht C, Kitzmann D, Proenca LA, Resgalla C (1994) Effect of fish and mesozooplankton manipulation on the phytoplankton community in the Patos Lagoon estuary, Southern Brazil. Estuaries 17:575–584

    Article  Google Scholar 

  • Acuña JL (2001) Pelagic tunicates: why gelatinous? Am Nat 158:100–107

    Article  PubMed  Google Scholar 

  • Adrian R, Schneider-Olt B (1999) Top–down effects of crustacean zooplankton on pelagic microorganisms in a mesotrophic lake. J Plankton Res 21:2175–2190

    Article  Google Scholar 

  • Andersen T, Hessen DO (1991) Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnol Oceanogr 36:807–814

    CAS  Google Scholar 

  • Banse K (1981) Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagic. Limnol Oceanogr 27:1059–1071

    Google Scholar 

  • Batten SD, Walne AW, Edwards M, Groom SB (2003) Phytoplankton biomass from continuous plankton recorder data: an assessment of the phytoplankton colour index. J Plankton Res 25:697–702

    Article  CAS  Google Scholar 

  • Becker C, Brepohl D, Feuchtmayr H, Zöllner E, Sommer F, Clemmesen C, Sommer U, Boersma M (2004a) Impacts of copepods on marine seston, and resulting effects on Calanus finmarchicus RNA:DNA ratios in mesocosm experiments. Mar Biol 146:531–541

    Article  CAS  Google Scholar 

  • Becker C, Feuchtmayr H, Brepohl D, Santer B, Boersma M (2004b) Differential impact of copepods and cladocerans on lake seston, and resulting effects on zooplankton growth. Hydrobiologia 526:197–207

    Article  CAS  Google Scholar 

  • Behrends G (1997) Long-term investigation of seasonal mesozooplankton dynamics in Kiel Bight, Germany. In: Andrushaitis A (ed) Proceedings of the 13th Baltic Marine biologists symposium, Jurmala 1993, pp 93–98

  • Benndorf J (1990) Conditions for effective biomanipulations; conclusions derived from whole lake experiments in Europe. Hydrobiologia 200:187–203

    Article  Google Scholar 

  • Borer ET, Seabloom EW, Shurin JB, Anderson KE, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2005) What determines the strength of a trophic cascade? Ecology 86:528–537

    Article  Google Scholar 

  • Brendelberger H, Herbeck M, Lang H, Lampert W (1986) Daphnia’s filters are not solid walls. Arch Hydrobiol 107:197–202

    Google Scholar 

  • Brett MT, Goldman CR (1996) A meta-analysis of the freshwater trophic cascade. Proc Natl Acad Sci USA 93:7723–7726

    Article  PubMed  CAS  Google Scholar 

  • Burns CW, Schallenberg M (1996) Relative impact of cladocerans, copepods and nutrients on the microbial food web of a mesotrophic lake. J Plankton Res 18:683–714

    Article  Google Scholar 

  • Burns CW, Schallenberg M (1998) Impacts of nutrients and zooplankton on the microbial food web of an ultra-oligotrophic lake. J Plankton Res 20:1501–1525

    Article  Google Scholar 

  • Carpenter SR, Kitchell JF, Hodgson JR (1986) Cascading trophic interactions and lake productivity. BioScience 35:634–639

    Article  Google Scholar 

  • Chisholm SW (1992) Phytoplankton size. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York, pp 213–237

    Google Scholar 

  • Deibel D (1992) Laboratory-measured grazing and ingestion rates of the salp Thalia democratica Forksal and Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). J Plankton Res 4:189–201

    Article  Google Scholar 

  • DeMott WR (1988) Discrimination between algae and artificial particles by freshwater and marine copepods. Limnol Oceanogr 33:397–408

    Google Scholar 

  • Elser JJ, Hassett RP (1994) A stoichiometric analysis of the zooplankton–phytoplankton interaction in marine and freshwater ecosystems. Nature 370:211–213

    Article  Google Scholar 

  • Elser JJ, Urabe J (1999) The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology 82:898–903

    Google Scholar 

  • Elser JJ, Elser MM, MacKay NA, Carpenter SR (1988) Zooplankton-mediated transitions between N- and P-limited algal growth. Limnol Oceanogr 33:1–14

    CAS  Google Scholar 

  • Fernández D, Lopez-Urrutia A, Fernández A, Acuña JL, Harris R (2004) Retention efficiency of 0.2 to 0.6 μm particles by the appendicularians Oikopleura dioica and Frittilaria borealis. Mar Ecol Prog Ser 266:89–101

    Article  Google Scholar 

  • Feuchtmayr H (2004) Mesozooplankton impacts on lower trophic levels from freshwater, marine and brackish systems in spring—a comparative study. PhD Thesis, University of Kiel

  • Feuchtmayr H, Zöllner E, Santer B, Sommer U, Grey J (2004) Zooplankton interactions in enclosure experiment: insights from stable isotopes. Freshw Bio 49:1495–1504

    Article  Google Scholar 

  • Frank KT, Petrie B, Choi JS, Leggett WC (2005) Trophic cascades in a formerly cod-dominated ecosystem. Science 308:1621–1623

    Article  PubMed  CAS  Google Scholar 

  • Geller W, Müller H (1981) The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia 49:316–321

    Article  Google Scholar 

  • Gilbert JJ (1985) Competition between rotifers and Daphnia. Ecology 66:1943–1950

    Article  Google Scholar 

  • Gismervik I (1997) Stoichiometry of some marine planktonic crustaceans. J Plankton Res 19:279–285

    Article  Google Scholar 

  • Granéli E, Turner JT (2002) Top–down regulation in ctenophore–copepod–ciliate–diatom–phytoflagellate communities in coastal waters: a mesocosm study. Mar Ecol Progr Ser 239:57–68

    Article  Google Scholar 

  • Greve W, Reiners F, Nast J, Hofmann S (2004) Helgoland Roads meso- and macrozooplankton time-series 1974 to 2004: lessons from 30 years of single spot, high frequency sampling at the only off-shore island in the North Sea. Helgoland Mar Res 58:274–288

    Article  Google Scholar 

  • Gu B, Schell DM, Alexander V (1994) Stable carbon and nitrogen isotopic analysis of the plankton food web in a subarctic lake. Can J Fish Aquat Sci 51:1338–1344

    Google Scholar 

  • Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control and competition. Am Nat 94:421–425

    Article  Google Scholar 

  • Hecky RE, Campbell P, Hendzel LL (1993) The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol Oceanogr 38:709–724

    Article  CAS  Google Scholar 

  • Heiskanen AS, Tamminen T, Gundersen K (1996) Impact of planktonic food web structure on nutrient retention and loss from a late summer pelagic system in the coastal northern Baltic Sea. Mar Ecol Progr Ser 145:195–208

    Article  Google Scholar 

  • Hessen DO (1990) Carbon, nitrogen and phosphorus status of Daphnia at varying food conditions. J Plankton Res 12:1239–1249

    Article  CAS  Google Scholar 

  • Hessen DO, Lyche A (1991) Inter- and intraspecific variations in zooplankton element composition. Arch Hydrobiol 121:343–353

    Google Scholar 

  • Katechakis A, Stibor H, Sommer U, Hansen T (2004) Feeding selectivities and food niche separation of Acartia clausi, Penilia avirostris (Crustacea) and Doliolum denticulatum (Thaliacea) in Blanes Bay (Catalan Sea, NW Mediterranean). J Plankton Res 26:589–603

    Article  Google Scholar 

  • Kim SW, Onbé T, Yoon YH (1989) Feeding habits of marine cladocerans in the Inland sea of Japan. Mar Biol 100:313–318

    Article  Google Scholar 

  • Kiørboe T, Saiz E, Viitasalo M (1996) Prey switching behaviour in the planktonic copepod Acartia tonsa. Mar Ecol Prog Ser 143:65–75

    Article  Google Scholar 

  • Kleppel GS (1993) On the diet of calanoid copepods. Mar Ecol Prog Ser 99:183–195

    Article  Google Scholar 

  • Klein Breteler WCM., Schogt N, Baas M, Schouten S, Kraay GW (1999) Trophic upgrading of food quality by protozoans enhancing copepod growth. Mar Biol 135:191–198

    Article  Google Scholar 

  • Lampert W (1987) Predictability of lake ecosystems: the role of biotic interactions. Ecol Stud 61:333–346

    Google Scholar 

  • Levinsen H, Turner JT, Nielssen TG, Hansen BW (2000) On the trophic coupling between protists and copepods in arctic marine ecosystems. Mar Ecol Prog Ser 204:65–77

    Article  Google Scholar 

  • Lopez-Urrutia A, Harris RP, Smith T (2004) Predation by calanoid copepods on the appendicularian Oikopleura dioica. Limnol Oceanogr 49:303–307

    Google Scholar 

  • McQueen DJ, Johannes MRS, Post JR, Stewart DJ, Lean DRS (1989) Bottom-up and top-down impacts on freshwater pelagic community structure. Ecol Monogr 59:289–309

    Article  Google Scholar 

  • Meili M, Kling GW, Fry B, Bell RT, Ahlgren I (1996) Sources and partitioning of organic matter in a pelagic microbial food web inferred from the isotopic composition (δ13C and δ15N) of zooplankton species. Arch Hydobiol Spec Issues Adv Limnol 48:53–61

    CAS  Google Scholar 

  • Micheli F (1999) Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic ecosystems. Science 285:1396–1398

    Article  PubMed  CAS  Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140

    Article  CAS  Google Scholar 

  • Mitra A, Flynn KJ (2005) Predator–prey interactions: is “ecological stoichiometry” sufficient when good food goes bad? J Plankton Res 27:393–399

    Article  Google Scholar 

  • Nakamura Y, Suzuki K, Suzuki SY, Hiromi J (1997) Production of Oikopleura dioica (Appendicularia) following a picoplankton bloom in a eutrophic coastal area. J Plankton Res 19:113–124

    Article  Google Scholar 

  • Nival S, Ravera S (1979) Morphological study of the appendages of the marine cladoceran Evadne spinifera Müller by means of the scanning electron microscope. J Plankton Res 1:207–213

    Article  Google Scholar 

  • Olsen Y, Varum KM, Jensen A (1986) Dependence of the rate of release of phosphorus by zooplankton on the C:P ratio in the food supply, as calculated by a recycling model. Limnol Oceanogr 31:34–44

    Google Scholar 

  • Olsson P, Granéli E, Carlsson P, Abreu P (1992) Structuring of a postspring phytoplankton community by manipulating trophic interactions. J Exp Mar Biol Ecol 158:249–266

    Article  Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. Trends Ecol Evol 15:483–488

    Article  Google Scholar 

  • Paffenhöfer GA (1973) The cultivation of an appendicularian through numerous generations. J Plankton Res 2:355–365

    Article  Google Scholar 

  • Paine RT (1980) Food webs, linkage, interaction strength and community infrastructure. J Anim Ecol 49:667–685

    Google Scholar 

  • Persson L (1999) Trophic cascades: abiding heterogeneity and the trophic level concept at the end of the road. Oikos 85:385–397

    Article  Google Scholar 

  • Polis GA, Sears ALW, Huxel GR, Strong DR, Maron J (2000) When is a trophic cascade a trophic cascade? Trends Ecol Evol 15:473–475

    Article  PubMed  Google Scholar 

  • Pomeroy LR (1974) The ocean foodweb, a changing paradigm. BioScience 24:499–504

    Article  Google Scholar 

  • Ptacnik R, Sommer U, Hansen T, Martens V (2004) Effects of microzooplankton and mixotrophy in an experimental planktonic food web. Limnol Oceanogr 49:1435–1445

    Article  Google Scholar 

  • Schlesinger DA, Molot LA, Shuter JB (1981) Specific growth rates of freshwater algae in relation to cell size and light intensity. Can J Fish Aquat Sci 38:1052–1058

    Article  Google Scholar 

  • Shapiro J, Wright DI (1974) Lake restoration by biomanipulation. Round Lake, Minnesota, the first two years. Freshwat Biol 14:371–383

    Google Scholar 

  • Shiomoto A, Tadokoro K, Nagasawa K, Ishida Y (1997) Trophic relations in the subarctic North Pacific ecosystem: possible feeding effects from pink salmon. Mar Ecol Prog Ser 150:75–85

    Article  Google Scholar 

  • Shurin JB, Borer ET, Seabloom EW, Anderson K, Blanchette CA, Broitman B (2002) A cross-ecosystem comparison of the strength of trophic cascades. Ecol Lett 5:785–791

    Article  Google Scholar 

  • Sommer F (2003) A comparison of the impact of major zooplankton taxa on marine, brackish and freshwater phytoplankton during summer. PhD Thesis, University of Kiel

  • Sommer U (1989) Maximal growth rates of Antarctic phytoplankton: only weak dependence on cell size. Limnol Oceanogr 34:1109–1112

    Article  Google Scholar 

  • Sommer U, Stibor H (2002) Copepoda—Cladocera—Tunicata: the role of three major mesozooplankton groups in pelagic food webs. Ecol Res 17:161–174

    Article  Google Scholar 

  • Sommer F, Sommer U (2004) δ15N signatures of marine mesozooplankton and seston size fractions in Kiel Fjord, Baltic Sea. J Plankton Res 26:495–500

    Article  CAS  Google Scholar 

  • Sommer F, Stibor H, Sommer U, Velimirov B (2000) Grazing by mesozooplankton from Kiel Bight, Baltic sea, on different sized algae and natural seston size fractions. Mar Ecol Prog Ser 199:43–53

    Article  Google Scholar 

  • Sommer U, Sommer F, Santer B, Jamieson C, Beorsma M, Becker C, Hansen T (2001) Complementary impact of copepods and cladocerans on phytoplankton. Ecol Lett 4:545–550

    Article  Google Scholar 

  • Sommer U, Stibor H, Katechakis A, Sommer F, Hansen T (2002a) Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production. Hydrobiologia 484:11–20

    Article  Google Scholar 

  • Sommer U, Berninger UG, Böttger-Schnack R, Cornils A, Hagen W, Hansen T, Al-Najjar T, Post AF, Schnack-Schiel SB, Stibor H, Stübing D, Wickham S (2002b) Grazing during early spring in the Gulf of Aqaba and the northern Red Sea. Mar Ecol Prog Ser 239:251–261

    Article  Google Scholar 

  • Sommer U, Sommer F, Santer B, Zöllner E, Jürgens K, Jamieson C, Boersma M, Gocke K (2003) Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia 135:639–647

    PubMed  Google Scholar 

  • Sommer F, Hansen T, Feuchtmayr H, Santer B, Tokle N, Sommer U (2003a) Do calanoid copepods suppress appendicularians in the coastal ocean? J Plankton Res 25:869–871

    Article  Google Scholar 

  • Sommer F, Santer B, Jamieson C, Hansen T, Sommer U (2003b) Daphnia population growth but not moulting is a substantial phosphorus drain for phytoplankton. Freshwat Biol 48:67–74

    Article  CAS  Google Scholar 

  • Sommer U, Sommer F, Feuchtmayr H, Hansen T (2004) The influence of mesozooplankton on phytoplankton nutrient limitation: a mesocosm study with northeast Atlantic phytoplankton. Protist 155:295–304

    Article  PubMed  Google Scholar 

  • Sommer F, Saage A, Santer B, Hansen T, Sommer U (2005a) Linking foraging strategies of marine calanoid copepods to patterns of nitrogen stable isotope signatures in a mesocosm study. Mar Ecol Prog Ser 286:99–106

    Article  CAS  Google Scholar 

  • Sommer U, Hansen T, Blum O, Holzner N, Vadstein O, Stibor H (2005b) Copepod and microzooplankton grazing in mesocosms fertilised with different Si:N ratios: no overlap between food spectra and Si:N-influence on zooplankton trophic level. Oecologia 142:274–283

    Article  Google Scholar 

  • Sterner RW (1986) Herbivores’ direct and indirect effects on algal populations. Science 231:605–607

    Article  PubMed  CAS  Google Scholar 

  • Stibor H, Vadstein O, Diehl S, Gelzleichter A, Hansen T, Hantzsche F, Katechakis A, Lippert B, Loseth K, Peters C, Roederer W, Sandow M, Sundt-Hansen L, Olsen Y (2004a) Copepods act as a switch between alternative marine pelagic food webs. Ecol Lett 7:321–328

    Article  Google Scholar 

  • Stibor H, Vadstein O, Lippert B, Roederer W, Olsen Y (2004b) Calanoid copepods and nutrient enrichment determine population dynamics of the appendicularian Oikopleura dioica: a mesocosm experiment. Mar Ecol Prog Ser 270:209–215

    Article  Google Scholar 

  • Strong D (1992) Are all trophic cascades wet? Differentiation and donor control in speciose ecosystems. Ecology 73:747–754

    Article  Google Scholar 

  • Tang EPY (1995) The allometry of algal growth rates. J Plankton Res 17:1325–1335

    Article  Google Scholar 

  • Tiselius P, Jonsson PR (1990) Foraging behaviour of six calanoid copepods. Observations and hydrodynamic analysis. Mar Ecol Prog Ser 66:23–33

    Article  Google Scholar 

  • Uitto A, Kaitala S, Kuosa H, Pajuniemi R (1995) Effect of nutrient addition and predation of mysid shrimp (Neomysis integer) on a plankton community in a short-term enclosure experiment in the Northern Baltic. Aqua Fenn 25:23–31

    CAS  Google Scholar 

  • Urabe J, Nakanishi M, Kawabata K (1995) Contribution of metazoan plankton to the cycling of nitrogen and phosphorus in Lake Biwa. Limnol Oceanogr 40:232–241

    Article  CAS  Google Scholar 

  • van Donk E, Grimm MP, Gulati DJ, Klein Breteler JPG (1990) Whole-lake food-web manipulation as a means to study community interactions in small ecosystems. Hydrobiologia 200:275–289

    Article  Google Scholar 

  • Walve J, Larsson U (1999) Carbon, nitrogen and phosphorous stoichiometry of crustacean zooplankton in the Baltic Sea: implications for nutrient recycling. J Plankton Res 21:2309–2321

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Sommer.

Additional information

Communicated by Roland Brandl

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommer, U., Sommer, F. Cladocerans versus copepods: the cause of contrasting top–down controls on freshwater and marine phytoplankton. Oecologia 147, 183–194 (2006). https://doi.org/10.1007/s00442-005-0320-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-005-0320-0

Keywords

Navigation