Skip to main content
Log in

Controlling for anthropogenically induced atmospheric variation in stable carbon isotope studies

  • Global Change Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Increased use of stable isotope analysis to examine food-web dynamics, migration, transfer of nutrients, and behavior will likely result in expansion of stable isotope studies investigating human-induced global changes. Recent elevation of atmospheric CO2 concentration, related primarily to fossil fuel combustion, has reduced atmospheric CO2 δ13C (13C/12C), and this change in isotopic baseline has, in turn, reduced plant and animal tissue δ13C of terrestrial and aquatic organisms. Such depletion in CO2 δ13C and its effects on tissue δ13C may introduce bias into δ13C investigations, and if this variation is not controlled, may confound interpretation of results obtained from tissue samples collected over a temporal span. To control for this source of variation, we used a high-precision record of atmospheric CO2 δ13C from ice cores and direct atmospheric measurements to model modern change in CO2 δ13C. From this model, we estimated a correction factor that controls for atmospheric change; this correction reduces bias associated with changes in atmospheric isotopic baseline and facilitates comparison of tissue δ13C collected over multiple years. To exemplify the importance of accounting for atmospheric CO2 δ13C depletion, we applied the correction to a dataset of collagen δ13C obtained from mountain lion (Puma concolor) bone samples collected in California between 1893 and 1995. Before correction, in three of four ecoregions collagen δ13C decreased significantly concurrent with depletion of atmospheric CO2 δ13C (n ≥ 32, P ≤ 0.01). Application of the correction to collagen δ13C data removed trends from regions demonstrating significant declines, and measurement error associated with the correction did not add substantial variation to adjusted estimates. Controlling for long-term atmospheric variation and correcting tissue samples for changes in isotopic baseline facilitate analysis of samples that span a large temporal range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arens NC, Jahren AH, Amundson R (2000) Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? Paleobiology 26:137–164

    Article  Google Scholar 

  • Barber VA, Juday GP, Finney BP (2000) Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–672

    Article  PubMed  CAS  Google Scholar 

  • Beier P (1993) Determining minimum habitat areas and habitat corridors for cougars. Cons Biol 7:94–108

    Article  Google Scholar 

  • Ben-David M, Flynn RW, Schell DM (1997) Annual and seasonal changes in diets of martens: evidence from stable isotope analysis. Oecologia 111:280–291

    Article  Google Scholar 

  • Ben-David M, Bowyer RT, Duffy LK, Roby DD, Schell DM (1998a) Social behavior and ecosystem processes: river otter latrines and nutrient dynamics of terrestrial vegetation. Ecology 79:2567–2571

    Google Scholar 

  • Ben-David M, Hanley TA, Schell DM (1998b) Fertilization of terrestrial vegetation by spawning Pacific salmon: the role of flooding and predator activity. Oikos 83:47–55

    Article  CAS  Google Scholar 

  • Ben-David M, Titus K, Beier LR (2004) Consumption of salmon by Alaskan brown bears: a trade-off between nutritional requirements and the risk of infanticide? Oecologia 138:465–474

    Article  PubMed  Google Scholar 

  • Bergengren JC, Thompson SL, Pollard D, Deconto RM (2001) Modeling global climate-vegetation interactions in a doubled CO2 world. Clim Change 50:31–75

    Article  CAS  Google Scholar 

  • Böhm F, Joachimski MM, Lehnert H, Morgenroth G, Kretschmer W, Vacelet J, Dullo WC (1996) Carbon isotopes from extant Caribbean and South Pacific sponges: evolution of δ13C in surface water DIC. Earth Planet Sci Lett 139:291-303

    Article  Google Scholar 

  • Burton RK, Snodgrass JJ, Gifford-Gonzalez D, Guilderson T, Brown T, Koch PL (2001) Holocene changes in the ecology of northern fur seals: insights from stable isotopes and archaeofauna. Oecologia 128:107–115

    Article  Google Scholar 

  • Cabana G, Rasmussen JB (1994) Modeling food-chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372:255–257

    Article  CAS  Google Scholar 

  • Cerling TE, Harris JM (1999) Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120: 347–363

    Article  Google Scholar 

  • Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158

    Article  CAS  Google Scholar 

  • Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1998) Miocene/Pliocene shift: one step or several? A reply. Nature 393:127

    Article  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351

    Article  CAS  Google Scholar 

  • DeNiro MJ, Schoeninger MJ (1983) Stable carbon and nitrogen isotope ratios of bone collagen: variations within individuals, between sexes and within populations raised on monotonous diets. J Arch Sci 10:199–203

    Article  Google Scholar 

  • Druffel ERM, Benavides LM (1986) Input of excess CO2 to the surface ocean calculated from stable carbon isotope ratios in a banded Jamaican sclerosponge. Nature 321:58–61

    Article  CAS  Google Scholar 

  • France RL (1995) Differentiation between littoral and pelagic food webs in lakes using carbon isotopes. Limnol Oceanogr 40:1310–1313

    Article  Google Scholar 

  • Francey RJ, Allison CE, Etheridge DM, Trudinger CM, Enting IG, Leuenberger M, Langenfelds RL, Michel E, Steele LP (1999) A 1000-year high precision record of δ13C in atmospheric CO2. Tellus 51B:170–193

    CAS  Google Scholar 

  • Freyer HD (1979) On the 13C record in tree rings. Part I. 13C variations in northern hemispheric trees during the last 150 years. Tellus 31:124–137

    CAS  Google Scholar 

  • Friedli H, Lötscher H, Oeschger H, Siegenthaler U, Stauffer B (1986) Ice core record of the 13C/12C ratio of atmospheric CO2 of the past two centuries. Nature 324:237–238

    Article  CAS  Google Scholar 

  • Hafner MS, Gannon WL, Salazar-Bravo J, Alvarez-Casteñeda ST (1997) Mammal collections in the Western Hemisphere: a survey and directory of existing collections. American Society of Mammalogists, Lawrence, KS

    Google Scholar 

  • Hibbard KA, Archer S, Schimel DS, Valentine DW (2001) Biogeochemical changes accompanying woody plant encroachment in a subtropical savanna. Ecology 82:1999–2011

    Google Scholar 

  • Hickman JC (1993) The Jepson manual: higher plants of California. University of California Press, Berkeley, CA

    Google Scholar 

  • Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326

    Article  Google Scholar 

  • Hobson KA, Clark RG (1992) Assessing avian diets using stable isotopes I: turnover of 13C in tissues. Condor 94:181–188

    Article  Google Scholar 

  • Iacumin P, Bocherens H, Delgado Huertes A, Mariotti A, Longinelli A (1997) A stable isotope study of fossil mammal remains from the Paglicci cave, Southern Italy. N and C as palaeoenvironmental indicators. Earth Planet Sci Lett 148:349–357

    Article  CAS  Google Scholar 

  • Iacumin P, Nikolaev V, Ramigni M (2000) C and N stable isotope measurements on Eurasian fossil mammals, 40,000 to 10,000 years BP: herbivore physiologies and palaeoenvironmental reconstruction. Palaeogeog Palaeoclim Palaeoecol 163:33–47

    Article  Google Scholar 

  • Keeling CD, Mook WG, Tans PP (1979) Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature 277:121–123

    Article  CAS  Google Scholar 

  • Keeling CD, Bacastow RB, Carter AF, Piper SC, Whorf TP, Heimann M, Mook WG, Roeloffzer H (1989) A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. In: Peterson DH (ed) Analysis of observational data. American Geophysical Monograph No. 55. American Geophysical Union, Washington, DC, pp 165–236

    Google Scholar 

  • Kelly JF (2000) Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zool 78:1–27

    Article  Google Scholar 

  • Kling GW, Fry B, Obrien WJ (1992) Stable isotopes and planktonic trophic structure in arctic lakes. Ecology 73:561–566

    Article  Google Scholar 

  • Kritzberg ES, Cole JJ, Pace ML, Granéli W, Bade DL (2004) Autochthonous versus allochthonous carbon sources of bacteria: results from whole-lake 13C addition experiments. Limnol Oceanogr 49:588–596

    CAS  Google Scholar 

  • Libby WF, Berger R, Mead JF, Alexander GV, Ross JF (1964) Replacement rates for human tissue from atmospheric radiocarbon. Science 146:1170–1172

    Article  PubMed  CAS  Google Scholar 

  • Lipp J, Trimborn P, Fritz P, Moser H, Becker B, Frenzel B (1991) Stable isotopes in tree ring cellulose and climate change. Tellus 43B:322–330

    Article  Google Scholar 

  • Long ES (2001) Response of mountain lions to a changing prey base in California. Masters thesis, University of North Dakota

  • Long ES, Sweitzer RA (2001) Museum collection records of mountain lions in California. Calif Fish Game 87:153–167

    Google Scholar 

  • Marino BD, McElroy MB (1991) Isotopic composition of atmospheric CO2 inferred from carbon in C4 plant cellulose. Nature 349:127–131

    Article  CAS  Google Scholar 

  • Matheus PE (1997) Paleoecology and ecomorphology of the giant short-faced bear in eastern Beringia. Ph.D. dissertation, University of Alaska Fairbanks

  • Mazany T, Lerman JC, Long A (1980) Carbon-13 in tree-ring cellulose as an indicator of past climates. Nature 287:432–435

    Article  CAS  Google Scholar 

  • McConnaughey TA, Burdett J, Whelan JF, Paull CK (1997) Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochim Cosmochim Acta 61:611–612

    Article  CAS  Google Scholar 

  • Moens T, Luyten C, Middelburg JJ, Herman PMJ, Vincx M (2002) Tracing organic matter sources of estuarine tidal flat nematodes with stable carbon isotopes. Mar Ecol Prog Ser 234:127–137

    Article  Google Scholar 

  • Nozaki Y, Rye DM, Turekian KK, Dodge RE (1978) A 200 year record of carbon-13 and carbon-14 variations in a Bermuda coral. Geophys Res Lett 5:825–828

    Article  CAS  Google Scholar 

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567

    Article  CAS  Google Scholar 

  • Osmond CB, Valaane N, Haslam SM, Uotila P, Roksandic Z (1981) Comparison of δ13C values in leaves of aquatic macrophytes from different habitats in Britain and Finland: some implications for photosynthetic processes in aquatic plants. Oecologia 50:117–124

    Article  Google Scholar 

  • Pace ML, Cole JJ, Carepenter SR, Kitchell JF, Hodgson JR, Van de Bogert MC, Bade DL, Kritzberg ES, Bastviken D (2004) Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427:240–242

    Article  PubMed  CAS  Google Scholar 

  • Petchy OL, McPhearson PT, Casey TM, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature 402:69–72

    Article  CAS  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Post DM (2003) Individual variation in the timing of ontogenetic niche shifts in largemouth bass. Ecology 84:1298–1310

    Article  Google Scholar 

  • Post E, Peterson RO, Steneth NC, McLaren BE (1999) Ecosystem consequences of wolf behavioral response to climate. Nature 401:905–907

    Article  CAS  Google Scholar 

  • Richards MP, Hedges REM (2003) Variations in bone collagen δ13C and δ15N values of fauna from Northwest Europe over the last 40,000 years. Palaeogeog Palaeoclim Palaeoecol 193:261–267

    Article  Google Scholar 

  • Richards MP, Mays S, Fuller BT (2002) Stable carbon and nitrogen isotope values of bone and teeth reflect weaning age at the medieval Wharram Percy site, Yorkshire, UK. Am J Phys Anthropol 119:205–210

    Article  PubMed  CAS  Google Scholar 

  • Seber GAF (1982) The estimation of animal abundance and related parameters, 2nd edn. Macmillan, New York

    Google Scholar 

  • Stuiver M, Braziunas TF (1987) Tree cellulose 13C/12C isotope ratios and climate change. Nature 328:58–60

    Article  CAS  Google Scholar 

  • Stuiver M, Burk RL, Quay PD (1984) 13C/12C ratios in tree rings and the transfer of biospheric carbon to the atmosphere. J Geophys Res 89:11731–1174

    Article  CAS  Google Scholar 

  • Sukumar R, Ramash R (1992) Stable carbon isotope ratios in Asian elephant collagen: implications for dietary studies. Oecologia 91:536–539

    Article  Google Scholar 

  • Tieszen LL, Boutton TW (1989) Stable carbon isotopes in terrestrial ecosystem research. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Springer, Berlin Heidelberg New York, pp167–195

    Google Scholar 

  • Vander Zanden MJ, Cabana G, Rasmussen JB (1997) Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Can J Fish Aquat Sci 54:1142–1158

    Article  Google Scholar 

  • Vander Zanden MJ, Casselman JM, Rasmussen JB (1999) Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401:464–467

    Article  CAS  Google Scholar 

  • White JW, Ciaias P, Figge RA, Kenny R, Markgraf V (1994) A high resolution record of atmospheric CO2 content from carbon isotopes in peat. Nature 367:153–156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the museums who generously permitted sampling of their specimens: California Academy of Sciences; California Polytechnic State University, San Luis Obispo; Humboldt State University; Museum of Natural History; Natural History Museum of Los Angeles County; San Diego Natural History Museum; San Jose State University, Museum of Birds and Mammals; Santa Barbara Museum of Natural History; United States National Museum of Natural History; University of California, Berkeley, Museum of Vertebrate Zoology; University of California, Davis, Museum of Wildlife and Fisheries Biology; University of California, Los Angeles, Dickey Collection; and University of Kansas, Museum of Natural History. We thank P. Matheus for helpful assistance with collagen extraction protocol. Funding for this project was provided by the National Geographic Society, American Wildlife Research Foundation, the Office of Research and Program Development at the University of North Dakota, and the UND Biology Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric S. Long.

Additional information

Communicated by David Post

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, E.S., Sweitzer, R.A., Diefenbach, D.R. et al. Controlling for anthropogenically induced atmospheric variation in stable carbon isotope studies. Oecologia 146, 148–156 (2005). https://doi.org/10.1007/s00442-005-0181-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-005-0181-6

Keywords

Navigation