Skip to main content

Advertisement

Log in

12-O-tetradecanoylphorbol-13-acetate activates hair follicle melanocytes for hair pigmentation via Wnt/β-catenin signaling

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Melanocyte stem cells (McSCs) undergo cyclical activation and quiescence together with hair follicle stem cells (HFSCs). This process is strictly controlled by the autonomous and extrinsic signaling environment. However, the modulation of factors important for the activation of McSCs for hair pigmentation remains unclear. 12-O-tetradecanoylphorbol-13-acetate (TPA) mimics vital signaling pathways involved in melanocyte growth and melanogenesis in vitro. To investigate whether TPA regulates quiescent McSCs for hair pigmentation, we topically smeared TPA on 7-week-old mouse dorsal skin and found that TPA stimulated hair growth and hair matrix pigmentation. These changes were associated with a significant increase in the number of hair bulb melanocytes. Moreover, in the TPA-treated group, hair bulge McSCs and hair bulb melanoblasts actively proliferated. At the molecular level, nuclear β-catenin, a key factor of Wnt/β-catenin signaling, was highly synthesized in melanocytes and keratinocytes in TPA-induced hair bulbs. Inhibition of Wnt/β-catenin signaling by injecting Dickkopf1 plasmids into TPA-treated skin decreased hair matrix pigmentation and inhibited the proliferation and differentiation of McSCs. Our findings suggest that the topical application of TPA stimulates the proliferation and differentiation of McSCs and their progeny for hair matrix pigmentation by activating Wnt/β-catenin signaling. This might provide a useful experimental model for the study of signals controlling the activation of McSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

McSCs:

Melanocyte stem cells

TPA:

12-O-tetradecanoylphorbol-13-acetate

sHG:

Secondary hair germ

HFSCs:

Hair follicle stem cells

TGF-β:

Transforming growth factor-β

PKC:

Protein kinase C

DKK1:

Dickkopf1

W:

Week

PBS:

Phosphate-buffered saline

BrdUrd:

Bromodeoxyuridine

H&E:

Hematoxylin and eosin

MITF:

Microphthalmia-associated transcription factor

DCT:

Dopachrome tautomerase

TRP1:

Tyrosinase-related protein 1

TYR:

Tyrosinase

EGFP:

Enhanced green fluorescent protein

CMV:

Cytomegalovirus

SD:

Standard deviation

IRS:

Inner root sheath

PHB:

Periphery of hair bulb

HFs:

Hair follicles

HS:

Hair shaft

HB:

Hair bulb

Epi:

Epidermis

SG:

Sebaceous gland

HM:

Hair matrix

MC:

Melanocyte

KCs:

Keratinocytes

Nβ-cat:

Nuclear β-catenin

DP:

Dermal papilla

References

  • Bafico A, Liu G, Yaniv A, Gazit A, Aaronson SA (2001) Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol 3:683–686

    Article  CAS  PubMed  Google Scholar 

  • Birbeck MSC, Barnicot NA (1959) Melanin formation in dark hair. In: Gordon M (ed) Pigment cell biology, vol 30. Electron microscope studies on pigment formation in human hair follicles. Academic Press, New York, pp 549–553

    Chapter  Google Scholar 

  • Blumberg PM (1988) Protein kinase C as the receptor for the phorbol ester tumor promoters: sixth Rhoads memorial award lecture. Cancer Res 48:1–8

    CAS  PubMed  Google Scholar 

  • Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y (1982) Direct activation of calcium- activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257:7847–7851

    CAS  PubMed  Google Scholar 

  • Cho JW, Jeong YW, Kim KS, Oh JY, Park JC, Lee JC, Baek WK, Suh SI, Suh MH (2001) p21(WAF1) is associated with CDK2 and CDK4 protein during HL-60 cell differentiation by TPA treatment. Cell Prolif 34:267–274

    Article  CAS  PubMed  Google Scholar 

  • Choi YS1, Zhang Y, Xu M, Yang Y, Ito M, Peng T, Cui Z, Nagy A, Hadjantonakis AK, Lang RA, Cotsarelis G, Andl T, Morrisey EE, Millar SE (2013) Distinct functions for Wnt/β-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell 13:720–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czajkowski R, Pokrywczynska M, Placek W, Zegarska B, Tadrowski T, Drewa T (2010) Transplantation of cultured autologous melanocytes: hope or danger? Cell Transplant 19:639–643

    Article  PubMed  Google Scholar 

  • Dunn KJ, Williams BO, Li Y, Pavan WJ (2000) Neural crest-directed gene transfer demonstrates Wnt1 role in melanocyte expansion and differentiation during mouse development. Proc Natl Acad Sci U S A 97:10050–10055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon M (1959) Ontogenetic relationship of the melanoblast, melanocyte, and melanophore. In: Gordon M (ed) Pigment cell biology, vol 14. The melanoma cell as an incompletely differentiated pigment cell. Academic Press, New York, pp 217–219

    Google Scholar 

  • Grichnik JM, Crawford J, Jimenez F, Kurtzberg J, Buchanan M, Blackwell S, Clark RE, Hitchcock MG (1995) Human recombinant stem-cell factor induces melanocytic hyperplasia in susceptible patients. J Am Acad Dermatol 33:577–583

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Yang K, Deng F, Ye J, Xing Y, Li Y, Lian X, Yang T (2012) Wnt3a promotes melanin synthesis of mouse hair follicle melanocytes. Biochem Biophys Res Commun 420:799–804

    Article  CAS  PubMed  Google Scholar 

  • Hari L, Brault V, Kleber M, Lee HY, Ille F, Leimeroth R, Paratore C, Suter U, Kemler R, Sommer L (2002) Lineage-specific requirements of beta-catenin in neural crest development. J Cell Biol 159:867–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hause HZ, O’Neill FJ, Freese UK, Hecker E (1978) Persisting oncogenic herpesvirus induced by the tumour promoter TPA. Nature 272:373–375

    Article  Google Scholar 

  • Hecker E (1968) Cocarcinogenic principles from the seed oil of Croton tiglium and from other Euphorbiaceae. Cancer Res 28:2338–2349

  • Horikawa T, Norris DA, Johnson TW, Zekman T, Dunscomb N, Bennion SD, Jackson RL, Morelli JG (1996) DOPA-negative melanocytes in the outer root sheath of human hair follicles express premelanosomal antigens but not a melanosomal antigen or the melanosome-associated glycoproteins tyrosinase, TRP-1, and TRP-2. J Invest Dermatol 106:28–35

    Article  CAS  PubMed  Google Scholar 

  • Ikeya M, Lee SM, Johnson JE, McMahon AP, Takada S (1997) Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 389:966–970

    Article  CAS  PubMed  Google Scholar 

  • Kawa Y, Soma Y, Nakamura M, Ito M, Kawakami T, Baba T, Sibahara K, Ohsumi K, Ooka S, Watabe H, Ono H, Hosaka E, Kimura S, Kushimoto T, Mizoguchi M (2005) Establishment of a kit-negative cell line of melanocyte precursors from mouse neural crest cells. Pigment Cell Res 18:188–195

    Article  CAS  PubMed  Google Scholar 

  • Kelsh RN, Harris ML, Colanesi S, Erickson CA (2009) Stripes and belly-spots—a review of pigment cell morphogenesis in vertebrates. Semin Cell Dev Biol 20:90–104

    Article  CAS  PubMed  Google Scholar 

  • Lei M, Gao X, Yang L, Yang T, Lian X (2011) Gsdma3 gene is needed for the induction of apoptosis-driven catagen during mouse hair follicle cycle. Histochem Cell Biol 136:335–343

    Article  CAS  PubMed  Google Scholar 

  • Lei M, Bai X, Yang T, Lai X, Qiu W, Yang L, Lian X (2012) Gsdma3 is a new factor needed for TNF-alpha-mediated apoptosis signal pathway in mouse skin keratinocytes. Histochem Cell Biol 138:385–396

    Article  CAS  PubMed  Google Scholar 

  • Lei M, Guo H, Qiu W, Lai X, Yang T, Widelitz RB, Chuong CM, Lian X, Yang L (2014) Modulating hair follicle size with Wnt10b/DKK1 during hair regeneration. Exp Dermatol 23:407–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin KK, Andersen B (2008) Have hair follicle stem cells shed their tranquil image? Cell Stem Cell 3:581–582

    Article  CAS  PubMed  Google Scholar 

  • MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller-Rover S, Handjiski B, Veen C van der, Eichmuller S, Foitzik K, McKay IA, Stenn KS, Paus R (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117:3–15

  • Nakazawa K, Nakazawa H, Sahuc F, Damour O, Collombel C (1996) Effects of calphostin C, specific PKC inhibitor on TPA-induced normal human melanocyte growth, morphology and adhesion. Pigment Cell Res 9:28–34

    Article  CAS  PubMed  Google Scholar 

  • Niedel JE, Kuhn LJ, Vandenbark GR (1983) Phorbol diester receptor copurifies with protein kinase C. Proc Natl Acad Sci USA 80:36–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura EK, Jordan SA, Oshima H, Yoshida H, Osawa M, Moriyama M, Jackson IJ, Barrandon Y, Miyachi Y, Nishikawa S (2002) Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416:854–860

    Article  CAS  PubMed  Google Scholar 

  • Nishimura EK, Suzuki M, Igras V, Du J, Lonning S, Miyachi Y, Roes J, Beermann F, Fisher DE (2010) Key roles for transforming growth factor beta in melanocyte stem cell maintenance. Cell Stem Cell 6:130–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Guin WM, Sun TT, Manabe M (1992) Interaction of trichohyalin with intermediate filaments: three immunologically defined stages of trichohyalin maturation. J Invest Dermatol 98:24–32

    Article  PubMed  Google Scholar 

  • Osawa M, Egawa G, Mak SS, Moriyama M, Freter R, Yonetani S, Beermann F, Nishikawa S (2005) Molecular characterization of melanocyte stem cells in their niche. Development 132:5589–5599

    Article  CAS  PubMed  Google Scholar 

  • Prince S, Wiggins T, Hulley PA, Kidson SH (2003) Stimulation of melanogenesis by tetradecanoylphorbol 13-acetate (TPA) in mouse melanocytes and neural crest cells. Pigment Cell Res 16:26–34

    Article  CAS  PubMed  Google Scholar 

  • Rabbani P, Takeo M, Chou W, Myung P, Bosenberg M, Chin L, Taketo MM, Ito M (2011) Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell 145:941–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu JM, Han HJ (2015) Autotaxin-LPA axis regulates hMSC migration by adherent junction disruption and cytoskeletal rearrangement via LPAR1/3-dependent PKC/GSK3β/β-catenin and PKC/Rho GTPase pathways. Stem Cells 33:819–832

    Article  CAS  PubMed  Google Scholar 

  • Scott G (2014) Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin by Eisinger and Marko. Exp Dermatol 23:18–19

    Article  PubMed  Google Scholar 

  • Sharov A, Tobin DJ, Sharova TY, Atoyan R, Botchkarev VA (2005) Changes in different melanocyte populations during hair follicle involution (catagen). J Invest Dermatol 125:1259–1267

    Article  CAS  PubMed  Google Scholar 

  • Slominski A, Paus R (1993) Melanogenesis is coupled to murine anagen: toward new concepts for the role of melanocytes and the regulation of melanogenesis in hair growth. J Invest Dermatol 101:90–97

    Article  Google Scholar 

  • Stavroulaki M, Kardassis D, Chatzaki E, Sakellaris G, Lindschau C, Haller H, Tosca A, Krasagakis K (2008) Exposure of normal human melanocytes to a tumor promoting phorbol ester reverses growth suppression by transforming growth factor beta. J Cell Physiol 214:363–370

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Lee H, Choe Y, Cho S, Kim DH, Kim K (2001) Evidence for direct involvement of beta-catenin in phorbol ester-induced neurite outgrowth in GT1-1 hypothalamic neurones. J Neuroendocrinol 13:249–260

    Article  CAS  PubMed  Google Scholar 

  • Tanimura S, Tadokoro Y, Inomata K, Binh NT, Nishie W, Yamazaki S, Nakauchi H, Tanaka Y, McMillan JR, Sawamura D, Yancey K, Shimizu H, Nishimura EK (2011) Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell 8:177–187

    Article  CAS  PubMed  Google Scholar 

  • Tobimatsu T, Kaji H, Sowa H, Naito J, Canaff L, Hendy GN, Sugimoto T, Chihara K (2006) Parathyroid hormone increases beta-catenin levels through Smad3 in mouse osteoblastic cells. Endocrinology 147:2583–2590

    Article  CAS  PubMed  Google Scholar 

  • Tobin DJ, Bystryn JC (1996) Different populations of melanocytes are present in hair follicles and epidermis. Pigment Cell Res 9:304–310

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Yang T, Guo H, Tang Y, Deng F, Li Y, Xing Y, Yang L, Yang K (2013) Wnt10b promotes differentiation of mouse hair follicle melanocytes. Int J Med Sci 10:691–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Tung-Tien Sun for AE15 antibodies. Mingxing Lei is supported by Project funded by China Postdoctoral Science Foundation (2016M590866), Fundamental Research Funds for the central Universities (106112015CDJRC231206) and Special Funding for Postdoctoral Research Projects in Chongqing (Xm2015093).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohua Lian or Jinjin Wu.

Additional information

This work was supported by grants from the National Nature Science Foundation of China (grant number: 30972645).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Detection of hair size and differentiation after TPA treatment. a Bar chart depicting the maximum diameter of HB and HS from H&E-stained skin tissues from various groups of mice (HB hair bulb, HS hair shaft). *P < 0.05. b–d’’ Immunostaining detection of AE15 synthesis in control (b–d), T4W (b’–d’) and 14 W (b’’–d’’) hair follicles (HFs). Similar AE15 location in the T4W and 14 W HFs. Nuclei were stained with DAPI. Bars 100 μm (DOCX 623 kb)

Fig. S2

DCT + Brdu + cells in hair bulge. *P < 0.05. (DOCX 1999 kb)

Fig. S3

Detection of nuclear β-catenin in TPA- (b–b’’) or acetone- (control, a–a’’) treated melanoblasts by immunostaining. White arrows indicate β-catenin in cytomembrane (red), whereas yellow arrows indicate β-catenin in cell nuclei (red). Nuclei were stained with DAPI (blue). Bars 100 μm (DOCX 59 kb)

Fig. S4

Detection of green fluorescent protein (GFP) in various plasmid-treated groups. a T3W + N1: TPA-treated for 3 weeks plus N1-plasmid-treated. b T3W + DKK1: TPA-treated for 3 weeks plus DKK1-plasmid-treated. a’ T4W + N1: TPA-treated for 4 weeks plus N1-plasmid-treated. b’ T4W + DKK1: TPA-treated for 4 weeks plus DKK1-plasmid-treated. White arrows indicates cells synthesizing GFP. Nuclei were stained blue with DAPI. Bars 100 μm (DOCX 3760 kb)

Fig. S5

Decreased synthesis of nuclear β-catenin after T4W + DKK1 treatment. a–b’’ Immunostaining detection of both DCT and β-catenin synthesis in T4W + N1 (a, b), T4W + DKK1 (a’, b’) and 14 W HFs (a’’, b’’). c Representation showing the synthesis of both DCT and β-catenin in various groups. d Number of nuclear β-catenin + DCT+ cells and nuclear β-catenin + DCT- cells in the various groups (HB hair bulb, HM hair matrix, Nβ-cat nuclear β-catenin). Yellow arrows indicate cells synthesizing both DCT and nuclear β-catenin. White arrows indicate cells synthesizing nuclear β-catenin only. Nuclei were stained blue with DAPI. # P > 0.05, *P < 0.05. Bars 100 μm (DOCX 1255 kb)

Fig. S6

Detection of hair size and differentiation after T4W + DKK1 treatment. a Bar chart depicting the width of HB and HS in T4W + N1, T4W + DKK1 and 14 W HFs (HB hair bulb, HS hair shaft). *P < 0.05, # P > 0.05, no significant differences. b–d’’ Immunostaining analysis of AE15 in T4W + N1 (b–d), T4W + DKK1 (b’–d’) and 14 W HFs (b’’–d’’). Similar pattern of AE15 in the T4W + N1, T4W + DKK1 and 14 W HFs. White arrows indicate AE15-positive cells. Nuclei were stained blue with DAPI. Bars 100 μm (DOCX 715 kb)

Fig. S7

DCT + Brdu+ cells in hair bulge. *P < 0.05 (DOCX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, W., Tang, H., Guo, H. et al. 12-O-tetradecanoylphorbol-13-acetate activates hair follicle melanocytes for hair pigmentation via Wnt/β-catenin signaling. Cell Tissue Res 366, 329–340 (2016). https://doi.org/10.1007/s00441-016-2450-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2450-6

Keywords

Navigation