Skip to main content

Advertisement

Log in

Vitamin D-induced up-regulation of human keratinocyte cathelicidin anti-microbial peptide expression involves retinoid X receptor α

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The biologically active form of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25D3), has been reported to positively regulate the human cathelicidin anti-microbial peptide (CAMP) gene coding for LL-37, but the mechanisms are not completely understood. We have determined the expression of CAMP, vitamin D receptor (VDR), and the retinoid X receptor (RXR) isoforms in human skin and gingival tissue biopsies and investigated the signaling pathways involved in 1,25D3-induced upregulation of CAMP. Human skin and gingival biopsies exhibited few VDR-immunoreactive cells within the stratum basale, whereas rat colon enterocytes (positive control) possessed abundant VDR immunoreactivity. Nuclear VDR immunoreactivity was demonstrated in human skin keratinocytes (HaCaT cells). Gene analysis revealed that human skin biopsies expressed higher levels of both CAMP and RXRα mRNA than human gingival biopsies, whereas VDR and RXRβ transcript levels were similar in skin and gingiva. In HaCaT cells, treatment with 1,25D3 (5 nM and 1 μM) for 4 and 24 h up-regulated CAMP mRNA several fold, and treatment with 1,25D3 for 24 h increased protein expression of the pro-form of LL-37 (hCAP-18) by about 13 times. The 1,25D3-evoked stimulation of HaCaT CAMP expression was associated with attenuated VDR mRNA and protein expression. Treatment with RXRα short interfering RNA reversed the 1,25D3-induced CAMP expression in HaCaT cells, showing that RXRα is involved in the up-regulation of CAMP by 1,25D3. We conclude that the 1,25D3-evoked stimulation of CAMP expression in human skin keratinocytes is dependent on RXRα but is not associated with the up-regulation of VDR expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bikle DD, Pillai S (1993) Vitamin D, calcium and epidermal differentiation. Endocr Rev 14:3–19

    CAS  PubMed  Google Scholar 

  • Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  CAS  PubMed  Google Scholar 

  • Burton MF, Steel PG (2009) The chemistry and biology of LL-37. Nat Prod Rep 26:1572–1584

    Article  CAS  PubMed  Google Scholar 

  • Carlberg C, Campbell MJ (2013) Vitamin D receptor signaling mechanisms: integrated actions of a well-defined transcription factor. Steroids 78:127–136

    Article  CAS  PubMed  Google Scholar 

  • Carlberg C, Bendik I, Wyss A, Meier E, Sturzenbecker LJ, Grippo JF, Hunziker W (1993) Two nuclear signalling pathways for vitamin D. Nature 361:657–660

    Article  CAS  PubMed  Google Scholar 

  • Chow EC, Maeng HJ, Khan AA, Groothuis GM, Pang KS (2009) 1Alpha,25-dihydroxyvitamin D(3) triggered vitamin D receptor and farnesoid X receptor-like effects in rat intestine and liver in vivo. Biopharm Drug Dispos 30:457–475

    Article  CAS  PubMed  Google Scholar 

  • Colston KW, Mackay AG, Finlayson C, Wu JC, Maxwell JD (1994) Localisation of vitamin D receptor in normal human duodenum and in patients with coeliac disease. Gut 35:1219–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Consiglio M, Viano M, Casarin S, Castagnoli C, Pescarmona G, Silvagno F (2015) Mitochondrial and lipogenic effects of vitamin D on differentiating and proliferating human keratinocytes. Exp Dermatol 24:748–753

    Article  CAS  PubMed  Google Scholar 

  • Haussler MR, Kerr Whitfield G, Kaneko I, Haussler CA, Hsieh D, Hsieh JC, Jurutka PW (2013) Molecular mechanisms of vitamin D action. Calcif Tissue Int 92:77–98

    Article  CAS  PubMed  Google Scholar 

  • Healy KD, Frahm MA, DeLuca HF (2005) 1,25-Dihydroxyvitamin D3 up-regulates the renal vitamin D receptor through indirect gene activation and receptor stabilization. Arch Biochem Biophys 433:466–473

    Article  CAS  PubMed  Google Scholar 

  • Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281

    Article  CAS  PubMed  Google Scholar 

  • Jones G, Strugnell SA, DeLuca HF (1998) Current understanding of the molecular actions of vitamin D. Physiol Rev 78:1193–1231

    CAS  PubMed  Google Scholar 

  • Kongsbak M, Essen MR von, Boding L, Levring T, Schjerling P, Lauritsen JPH, Woetmann A, Odum N, Bonefeld CM, Geisler C (2014) Vitamin D up-regulates the vitamin D receptor by protecting it from proteasomal degradation in human CD4+ T cells. PLoS One 9:e96695

  • Kulkarni NN, Gunnarsson HI, Yi Z, Gudmundsdottir S, Sigurjonsson OE, Agerberth B, Gudmundsson GH (2016) Glucocorticoid dexamethasone down-regulates basal and vitamin D3 induced cathelicidin expression in human monocytes and bronchial epithelial cell line. Immunobiology 221:245–252

    Article  CAS  PubMed  Google Scholar 

  • Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC (1995) Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 63:1291–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WJ, Cha HW, Sohn MY, Lee SJ, Kim DW (2012) Vitamin D increases expression of cathelicidin in cultured sebocytes. Arch Dermatol Res 304:627–632

    Article  CAS  PubMed  Google Scholar 

  • Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, Kamen DL, Wagner M, Bals R, Steinmeyer A, Zügel U, Gallo RL, Eisenberg D, Hewison M, Hollis BW, Adams JS, Bloom BR, Modlin RL (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311:1770–1773

    Article  CAS  PubMed  Google Scholar 

  • Liu PT, Stenger S, Tang DH, Modlin RL (2007) Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol 179:2060–2063

    Article  CAS  PubMed  Google Scholar 

  • Nijnik A, Pistolic J, Filewod NCJ, Hancock REW (2012) Signaling pathways mediating chemokine induction in keratinocytes by cathelicidin LL-37 and flagellin. J Innate Immun 4:377–386

    Article  CAS  PubMed  Google Scholar 

  • Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347:1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Pan LC, Price PA (1987) Ligand-dependent regulation of the 1,25-dihydroxyvitamin D3 receptor in rat osteosarcoma cells. J Biol Chem 262:4670–4675

    CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Säll J, Carlsson M, Gidlöf O, Holm A, Humlén J, Öhman J, Svensson D, Nilsson BO, Jönsson D (2013) The antimicrobial peptide LL-37 alters human osteoblast Ca2+ handling and induces Ca2+-independent apoptosis. J Innate Immun 5:290–300

    Article  PubMed  Google Scholar 

  • Schauber J, Rieger D, Weiler F, Wehkamp J, Eck M, Fellermann K, Scheppach W, Gallo RL, Stange EF (2006) Heterogenous expression of human cathelicidin hCAP18/LL-37 in inflammatory bowel diseases. Eur J Gastroenterol Hepatol 18:615–621

    Article  CAS  PubMed  Google Scholar 

  • Sorensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS, Borregaard N (2001) Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97:3951–3959

    Article  CAS  PubMed  Google Scholar 

  • Svensson D, Gidlöf O, Turczyńska KM, Erlinge D, Albinsson S, Nilsson BO (2014) Inhibition of microRNA-125a promotes human endothelial cell proliferation and viability through an antiapoptotic mechanism. J Vasc Res 51:239–245

    Article  CAS  PubMed  Google Scholar 

  • Svensson D, Nebel D, Nilsson BO (2016a) Vitamin D3 modulates the innate immune response through regulation of the hCAP-18/LL-37 gene expression and cytokine production. Inflamm Res 65:25–32

    Article  CAS  PubMed  Google Scholar 

  • Svensson D, Wilk L, Mörgelin M, Herwald H, Nilsson BO (2016b) LL-37-induced host cell cytotoxicity depends on cellular expression of the globular C1q receptor (p33). Biochem J 473:87–98

    Article  CAS  PubMed  Google Scholar 

  • Türkoğlu O, Emingil G, Kutukculer N, Atilla G (2009) Gingival crevicular fluid levels of cathelicidin LL-37 and interleukin-18 in patients with chronic periodontitis. J Periodontol 80:969–976

    Article  PubMed  Google Scholar 

  • Wang Y, Becklund BR, DeLuca HF (2010) Identification of a highly specific and versatile vitamin D receptor antibody. Arch Biochem Biophys 494:166–177

    Article  CAS  PubMed  Google Scholar 

  • White JH (2010) Vitamin D as an inducer of cathelicidin antimicrobial peptide expression: past, present and future. J Steroid Biochem Mol Biol 121:234–238

    Article  CAS  PubMed  Google Scholar 

  • Wiese RJ, Uhland-Smith A, Ross TK, Prahl JM, DeLuca HF (1992) Up-regulation of the vitamin D receptor in response to 1,25-dihydroxyvitamin D3 results from ligand-induced stabilization. J Biol Chem 267:20082–20086

    CAS  PubMed  Google Scholar 

  • Wu S, Zhang YG, Lu R, Xia Y, Zhou D, Petrof EO, Claud EC, Chen D, Chang EB, Carmeliet G, Sun J (2015) Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut 64:1082–1094

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki K, Schauber J, Coda A, Lin H, Dorschner RA, Schechter NM, Bonnart C, Descargues P, Hovnanian A, Gallo RL (2006) Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J 20:2068–2080

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A, Dorschner RA, Bonnart C, Descargues P, Hovnanian A, Morhenn VB, Gallo RL (2007) Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 13:975–980

    Article  CAS  PubMed  Google Scholar 

  • Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7:179–196

    CAS  PubMed  Google Scholar 

  • Zhang YG, Wu S, Sun J (2013) Vitamin D, vitamin D receptor, and tissue barriers. Tissue Barriers 1:e23118

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Anna Themner-Persson and Ina Nordström for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengt-Olof Nilsson.

Additional information

This study was supported by grants from the Crafoord Foundation, the Greta and Johan Kock Foundation, the Alfred Österlund Foundation, the Påhlsson Foundation, the Royal Physiographic Society, the Swedish Dental Society, and the Southern Region within the Swedish Dental Association.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svensson, D., Nebel, D., Voss, U. et al. Vitamin D-induced up-regulation of human keratinocyte cathelicidin anti-microbial peptide expression involves retinoid X receptor α. Cell Tissue Res 366, 353–362 (2016). https://doi.org/10.1007/s00441-016-2449-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2449-z

Keywords

Navigation