Skip to main content

Advertisement

Log in

Comparative repair capacity of knee osteochondral defects using regenerated silk fiber scaffolds and fibrin glue with/without autologous chondrocytes during 36 weeks in rabbit model

  • Regular article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

A Correction to this article was published on 27 May 2019

This article has been updated

Abstract

The reconstruction capability of osteochondral (OCD) defects using silk-based scaffolds has been demonstrated in a few studies. However, improvement in the mechanical properties of natural scaffolds is still challengeable. Here, we investigate the in vivo repair capacity of OCD defects using a novel Bombyx mori silk-based composite scaffold with great mechanical properties and porosity during 36 weeks. After evaluation of the in vivo biocompatibility and degradation rate of these scaffolds, we examined the effectiveness of these fabricated scaffolds accompanied with/without autologous chondrocytes in the repair of OCD lesions of rabbit knees after 12 and 36 weeks. Moreover, the efficiency of these scaffolds was compared with fibrin glue (FG) as a natural carrier of chondrocytes using parallel clinical, histopathological and mechanical examinations. The data on subcutaneous implantation in mice showed that the designed scaffolds have a suitable in vivo degradation rate and regenerative capacity. The repair ability of chondrocyte-seeded scaffolds was typically higher than the scaffolds alone. After 36 weeks of implantation, most parts of the defects reconstructed by chondrocytes-seeded silk scaffolds (SFC) were hyaline-like cartilage. However, spontaneous healing and filling with a scaffold alone did not eventuate in typical repair. We could not find significant differences between quantitative histopathological and mechanical data of SFC and FGC. The fabricated constructs consisting of regenerated silk fiber scaffolds and chondrocytes are safe and suitable for in vivo repair of OCD defects and promising for future clinical trial studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 27 May 2019

    The published online of the original version contains mistakes.

  • 27 May 2019

    The published online of the original version contains mistakes.

References

  • Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416

    Article  CAS  PubMed  Google Scholar 

  • Bal BS, Rahaman MN, Jayabalan P, Kuroki K, Cockrell MK, Yao JQ, Cook JL (2010) In vivo outcomes of tissue-engineered osteochondral grafts. J Biomed Mater Res B 93B:164–174

    CAS  Google Scholar 

  • Berninger MT, Wexel G, Rummeny EJ, Imhoff AB, Anton M, Henning TD, Vogt S (2013) Treatment of osteochondral defects in the rabbit’s knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots. J Vis Exp 75:e4423

    PubMed  Google Scholar 

  • Brittberg M, Sjögren-Jansson E, Lindahl A, Peterson L (1997) Influence of fibrin sealant (Tisseel) on osteochondral defect repair in the rabbit knee. Biomaterials 18:235–242

    Article  CAS  PubMed  Google Scholar 

  • Deng J, She R, Huang W, Dong Z, Mo G, Liu B (2013) A silk fibroin/chitosan scaffold in combination with bone marrow-derived mesenchymal stem cells to repair cartilage defects in the rabbit knee. J Mater Sci Mater Med 24(8):2037–2046

    Article  CAS  PubMed  Google Scholar 

  • Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R (1994) Biodegradable polymer scaffolds for tissue engineering. Biotechnology (NY) 12:689–693

    Article  CAS  Google Scholar 

  • Haleem AM, Singergy AA, Sabry D, Atta HM, Rashed LA, Chu CR, El Shewy MT, Azzam A, Abdel Aziz MT (2010) The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage 1:253–261

    Article  PubMed  PubMed Central  Google Scholar 

  • Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE, Volloch V, Kaplan DL, Altman GH (2005) In vitro degradation of Silk fibroin. Biomaterials 26:3385–3393

    Article  CAS  PubMed  Google Scholar 

  • Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  CAS  PubMed  Google Scholar 

  • Iwasa J, Engebretsen L, Shima Y, Ochi M (2009) Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc 17(6):561–577

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin J, Wang J, Huang J, Huang F, Fu J, Yang X, Miao Z (2014) Transplantation of human placenta-derived mesenchymal stem cells in a silkfibroin/hydroxyapatite scaffold improves bone repair in rabbits. J Biosci Bioeng 118(5):593–598

    Article  CAS  PubMed  Google Scholar 

  • Kazemnejad S, Zarnani AH, Khanmohammadi M, Mobini S (2013) Chondrogenic differentiation of menstrual blood-derived stem cells on nanofibrous scaffolds. Methods Mol Biol 1058:149–169

    Article  CAS  PubMed  Google Scholar 

  • Kessler MW, Grande DA (2008) Tissue engineering and cartilage. Organogenesis 4(1):28–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Kon E, Vannini F, Buda R, Filardo G, Cavallo M, Ruffilli A, Nanni M, Di Martino A, Marcacci M, Giannini S (2012) How to treat osteochondritis dissecans of the knee: surgical techniques and new trends AAOS exhibit selection. J Bone Joint Surg Am 94(1):1–8

    Article  Google Scholar 

  • Könst YE, Benink RJ, Veldstra R, van der Krieke TJ, Helder MN, van Royen BJ (2012) Treatment of severe osteochondral defects of the knee by combined autologous bone grafting and autologous chondrocyte implantation using fibrin gel. Knee Surg Sports Traumatol Arthrosc 20(11):2263–2269

    Article  PubMed  PubMed Central  Google Scholar 

  • Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65:457–470

    Article  CAS  PubMed  Google Scholar 

  • Li F, Chen YZ, Miao ZN, Zheng SY, Jin J (2012) Human placenta-derived mesenchymal stem cells with silk fibroin biomaterial in the repair of articular cartilage defects. Cell Reprogram 14(4):334–341

    CAS  PubMed  Google Scholar 

  • Lin PB, Ning LJ, Lian QZ, Xia Z, Xin Y, Sen BH, Fei NF (2010) A study on repair of porcine articular cartilage defects with tissue-engineered cartilage constructed in vivo by composite scaffold materials. Ann Plast Surg 65(4):430–436

    Article  CAS  PubMed  Google Scholar 

  • Mainil-Varlet P, Rieser F, Grogan S, Mueller W, Saager C, Jakob RP (2001) Articular cartilage repair using a tissue-engineered cartilage-like implant: an animal study. Osteoarthritis Cartilage 9SA:S6–S15

    Article  Google Scholar 

  • Martin I, Miot S, Barbero A, Jakob M, Wendt D (2007) Osteochondral tissue engineering. J Biomech 40:750–765

    Article  PubMed  Google Scholar 

  • Mobini S, Hoyer B, Solati-Hashjin M, Lode A, Nosoudi N, Samadikuchaksaraei A, Gelinsky M (2013) Fabrication and characterization of regenerated silk scaffolds reinforced with natural silk fibers for bone tissue engineering. J Biomed Mater Res A 101(8):2392–2404

    Article  PubMed  Google Scholar 

  • Moutos FT, Freed LE, Guilak F (2007) A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater 6(2):162–167

    Article  CAS  PubMed  Google Scholar 

  • Nam EK, Makhsous M, Koh J, Bowen M, Nuber G, Zhang LQ (2004) Biomechanical and histological evaluation of osteochondral transplantation in a rabbit model. Am J Sports Med 32:308–316

    Article  PubMed  Google Scholar 

  • Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv 31:706–721

    Article  CAS  PubMed  Google Scholar 

  • Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329:528–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SH, Park SR, Chung SI, Pai KS, Min BH (2005) Tissue-engineered cartilage using fibrin/hyaluronan composite gel and its in vivo implantation. Artif Organs 29(10):838–845

    Article  CAS  PubMed  Google Scholar 

  • Rahfoth B, Weisser J, Sternkopf F, Aigner T, von der Mark K, Bräuer R (1998) Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits. Osteoarthritis Cartilage 6(1):50–65

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Kundu B, Kirkham J, Wood D, Kundu SC, Yang XB (2013) Osteochondral tissue engineering in vivo: a comparative study using layered silk fibroin scaffolds from mulberry and nonmulberry silkworms. PLoS ONE 8(11):e80004

    Article  PubMed  PubMed Central  Google Scholar 

  • Shangkai C, Naohide T, Koji Y, Yasuji H, Masaaki N, Tomohiro T, Yasushi T (2007) Transplantation of allogeneic chondrocytes cultured in fibroin sponge and stirring chamber to promote cartilage regeneration. Tissue Eng 13(3):483–492

    Article  CAS  PubMed  Google Scholar 

  • Silverman RP, Passaretti D, Huang W, Randolph MA, Yaremchuk MJ (1999) Injectable tissue-engineered cartilage using a fibrin glue polymer. Plast Reconstr Surg 103:1809–1818

    Article  CAS  PubMed  Google Scholar 

  • Sung HJ, Meredith C, Johnson C, Galis ZS (2004) The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 25:5735–5742

    Article  CAS  PubMed  Google Scholar 

  • Van Susante JL, Buma P, Schuman L, Homminga GN, van den Berg WB, Veth RP (1999) Resurfacing potential of heterologous chondrocytes suspended in fibrin glue in large full-thickness defects of femoral articular cartilage: an experimental study in the goat. Biomaterials 20:1167–1175

    Article  PubMed  Google Scholar 

  • Velema J, Kaplan D (2006) Biopolymer-based biomaterials as scaffolds for tissue engineering. Adv Biochem Eng Biotechnol 102:187–238

    CAS  PubMed  Google Scholar 

  • Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt S, Wexel G, Tischer T, Schillinger U, Ueblacker P, Wagner B, Hensler D, Wilisch J, Geis C, Wübbenhorst D, Aigner J, Gerg M, Krüger A, Salzmann GM, Martinek V, Anton M, Plank C, Imhoff AB, Gansbacher B (2006) The influence of the stable expression of BMP2 in fibrin clots on the remodelling and repair of osteochondral defects. Biomaterials 30:2385–2392

    Article  Google Scholar 

  • Wakitani S, Goto T, Young RG, Mansour JM, Goldberg VM, Caplan AI (1998) Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng 4(4):429–444

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Kim HJ, Vunjak-Novakovic G, Kaplan DL (2006) Stem cell-based tissue engineering with Silk biomaterials. Biomaterials 27:6064–6082

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Rudym DD, Walsh A, Abrahamsen L, Kim HJ, Kim HS, Kirker-Head C, Kaplan DL (2008) In vivo degradation of three-dimensional Silk fibroin scaffolds. Biomaterials 29:3415–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wray LS, Rnjak-Kovacina J, Mandal BB, Schmidt DF, Gil ES, Kaplan DL (2012) A silk-based scaffold platform with tunable architecture for engineering criticallysized tissue constructs. Biomaterials 33:9214–9224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie X, Wang Y, Zhao C, Guo S, Liu S, Jia W, Tuan RS, Zhang C (2012) Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials 33(29):7008–7018

    Article  CAS  PubMed  Google Scholar 

  • Yan LP, Silva-Correia J, Oliveira MB, Vilela C, Pereira H, Sousa RA, Mano JF, Oliveira AL, Oliveira JM, Reis RL (2015) Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance. Acta Biomater 12:227–241

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Chen J, Tao J, Hu C, Chen L, Zhao H, Xu G, Heng BC, Ouyang HW (2013) The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold. Biomaterials 34(25):6046–6057

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the authorities of the Vice Presidency for Science and Technology for their financial support. The authors would like to thank Mohammad Ebrahim Sohrabi for preparing the histopathologic sections, and Morteza Gholizadeh-Frab and Farhad Hosseini for helping in animal surgeries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somaieh Kazemnejad.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemnejad, S., Khanmohammadi, M., Mobini, S. et al. Comparative repair capacity of knee osteochondral defects using regenerated silk fiber scaffolds and fibrin glue with/without autologous chondrocytes during 36 weeks in rabbit model. Cell Tissue Res 364, 559–572 (2016). https://doi.org/10.1007/s00441-015-2355-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2355-9

Keywords

Navigation