Skip to main content
Log in

The chemical coding of 5-hydroxytryptamine containing enteroendocrine cells in the mouse gastrointestinal tract

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The majority of 5-HT (serotonin) in the body is contained in enteroendocrine cells of the gastrointestinal mucosa. From the time of their discovery over 80 years ago, the 5-HT-containing cells have been regarded as a class of cell that is distinct from enteroendocrine cells that contain peptide hormones. However, recent studies have cast doubt on the concept of there being distinct classes of enteroendocrine cells, each containing a single hormone or occasionally more than one hormone. Instead, data are rapidly accumulating that there are complex patterns of colocalisation of hormones that identify multiple subclasses of enteroendocrine cells. In the present work, multiple labelling immunohistochemistry is used to investigate patterns of colocalisation of 5-HT with enteric peptide hormones. Over 95 % of 5-HT cells in the duodenum also contained cholecystokinin and about 40 % of them also contained secretin. In the jejunum, about 75 % of 5-HT cells contained cholecystokinin but not secretin and 25 % contained 5-HT plus both cholecystokinin and secretin. Small proportions of 5-HT cells contained gastrin or somatostatin in the stomach, PYY or GLP-1 in the small intestine and GLP-1 or somatostatin in the large intestine. Rare or very rare 5-HT cells contained ghrelin (stomach), neurotensin (small and large intestines), somatostatin (small intestine) and PYY (in the large intestine). It is concluded that 5-HT-containing enteroendocrine cells are heterogeneous in their chemical coding and by implication in their functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aiken KD, Kisslinger JA, Roth KA (1994) Immunohistochemical studies indicate multiple enteroendocrine cell differentiation pathways in the mouse proximal small intestine. Dev Dyn 201:63–70

    Article  CAS  PubMed  Google Scholar 

  • Andrews PLR, Naylor RJ, Joss RA (1998) Neuropharmacology of emesis and its relevance to anti-emetic therapy. Support Care Cancer 6:197–203

    Article  CAS  PubMed  Google Scholar 

  • Bayliss WM, Starling EH (1902) The mechanism of pancreatic secretion. J Physiol Lond 28:325–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beucher A, Gjernes E, Collin C, Courtney M, Meunier A, Collombat P, Gradwohl G (2012) The homeodomain-containing transcription factors Arx and Pax4 control enteroendocrine subtype specification in mice. PLoS ONE 7:e36449–e36449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blundell JE (1986) Serotonin manipulations and the structure of feeding behaviour. Appetite 7:39–56

    Article  CAS  PubMed  Google Scholar 

  • Bogunovic M, Dave SH, Tilstra JS, Chang DTW, Harpaz N, Xiong H, Mayer LF, Plevy SE (2007) Enteroendocrine cells express functional toll-like receptors. Am J Physiol Gastrointest Liver Physiol 292:G1770–G1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bornstein JC (2012) Serotonin in the gut: what does it do? Frontiers in Neuroscience 6

  • Bülbring E, Crema A (1958) Observations concerning the action of 5-hydroxytryptamine on the peristaltic refllex. Br J Pharmacol 13:444–457

    Google Scholar 

  • Cho H-J, Callaghan B, Bron R, Bravo DM, Furness JB (2014) Identification of enteroendocrine cells that express TRPA1 channels in the mouse intestine. Cell Tissue Res 356:77–82

    Article  CAS  PubMed  Google Scholar 

  • Cho H-J, Kosari S, Hunne B, Callaghan B, Rivera LR, Bravo DM, Furness JB (2015) Differences in hormone localisation patterns of K and L type enteroendocrine cells in the mouse and pig small intestine and colon. Cell Tissue Res 359:693–698

    Article  CAS  PubMed  Google Scholar 

  • Cooper SJ, Dourish CT (1990) Multiple cholecystokinin (CCK) receptors and CCK-monoamine interactions are instrumental in the control of feeding. Physiol Behav 48:849–857

    Article  CAS  PubMed  Google Scholar 

  • Costa M, Furness JB, Cuello AC, Verhofstad AAJ, Steinbusch HWM, Elde RP (1982) Neurons with 5-hydroxytryptamine-like immunoreactivity in the enteric nervous system: their visualization and reactions to drug treatment. Neuroscience 7:351–363

    Article  CAS  PubMed  Google Scholar 

  • Egerod KL, Engelstoft MS, Grunddal KV et al (2012) A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin. Endocrinology 153:5782–5795

    Article  CAS  PubMed  Google Scholar 

  • Ellis M, Chambers JD, Gwynne RM, Bornstein JC (2013) Serotonin and cholecystokinin mediate nutrient-induced segmentation in guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol 304:G749–G761

    Article  CAS  PubMed  Google Scholar 

  • Erspamer V, Asero B (1952) Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature 169:800–801

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Hunne B, Matsuda N, Yin L, Russo D, Kato I, Fujimiya M, Patterson M, McLeod J, Andrews ZB, Bron R (2011) Investigation of the presence of ghrelin in the central nervous system of the rat and mouse. Neuroscience 193:1–9

    Article  CAS  PubMed  Google Scholar 

  • Gershon MD (2013) 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Op Endoc Diab Obes 20:14–21

    Article  CAS  Google Scholar 

  • Gribble FM, Reimann F (2015) Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu Rev Physiol 78 (in press)

  • Habib AM, Richards P, Cairns LS, Rogers GJ, Bannon CAM, Parker HE, Morley TCE, Yeo GSH, Reimann F, Gribble FM (2012) Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 153:3054–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagbom M, Istrate C, Engblom D et al (2011) Rotavirus stimulates release of serotonin (5-HT) from human enterochromaffin cells and activates brain structures involved in nausea and vomiting. PLoS Pathog 7, e1002115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haugen M, Dammen R, Svejda B, Gustafsson BI, Pfragner R, Modlin I, Kidd M (2012) Differential signal pathway activation and 5-HT function: the role of gut enterochromaffin cells as oxygen sensors. Am J Physiol 303:G1164–G1173

    CAS  Google Scholar 

  • Helander HF, Fändriks L (2012) The enteroendocrine “letter cells” – time for a new nomenclature? Scand J Gastroenterol 47:3–12

    Article  CAS  PubMed  Google Scholar 

  • Heredia DJ, Gershon MD, Koh SD, Corrigan RD, Okamoto T, Smith TK (2013) Important role of mucosal serotonin in colonic propulsion and peristaltic reflexes: in vitro analyses in mice lacking tryptophan hydroxylase 1. J Physiol Lond 591:5939–5957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keating DJ, Spencer NJ (2010) Release of 5-Hydroxytryptamine from the mucosa is not required for the generation or propagation of colonic migrating motor complexes. Gastroenterology 138:659–670

    Article  CAS  PubMed  Google Scholar 

  • Kidd M, Modlin IM, Eick GN, Champaneria MC (2006) Isolation, functional characterization, and transcriptome of Mastomys ileal enterochromaffin cells. Am J Physiol 291:G778–G791

    CAS  Google Scholar 

  • Kidd M, Modlin IM, Gustafsson BI, Drozdov I, Hauso O, Pfragner R (2008) Luminal regulation of normal and neoplastic human EC cell serotonin release is mediated by bile salts, amines, tastants, and olfactants. Am J Physiol 295:G260–G272

    CAS  Google Scholar 

  • Li Y, Owyang C (1996) Pancreatic secretion evoked by cholecystokinin and non-cholecystokinin-dependent duodenal stimuli via vagal afferent fibes in the rat. J Physiol Lond 494:773–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Hao Y, Zhu J, Owyang C (2000) Serotonin released from intestinal enterochromaffin cells mediates luminal non-cholecystokinin-stimulated pancreatic secretion in rats. Gastroenterology 118:1197–1207

    Article  CAS  PubMed  Google Scholar 

  • Mawe GM, Coates MD, Moses PL (2006) Review article: intestinal serotonin signalling in irritable bowel syndrome. Aliment Pharmacol Ther 23:1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Morley JE (1990) Appetite regulation by gut peptides. Annu Rev Nutr 10:383–395

    Article  CAS  PubMed  Google Scholar 

  • Raghupathi R, Duffield MD, Zelkas L, Meedeniya A, Brookes SJH, Sia TC, Wattchow DA, Spencer NJ, Keating DJ (2013) Identification of unique release kinetics of serotonin from guinea-pig and human enterochromaffin cells. J Physiol Lond 591:5959–5975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehfeld JF (2004) A centenary of gastrointestinal endocrinology. Horm Metab Res 36:735–741

    Article  CAS  PubMed  Google Scholar 

  • Reigstad CS, Salmonson CE, Rainey JF III, Szurszewski JH, Linden DR, Sonnenburg JL, Farrugia G, Kashyap PC (2015) Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 29:1395–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth KA, Gordon JI (1990) Spatial differentiation of the intestinal epithelium: analysis of enteroendocrine cells containing immunoreactive serotonin, secretin, and substance P in normal and transgenic mice. Proc Natl Acad Sci U S A 87:6408–6412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth KA, Kim S, Gordon JI (1992) Immunocytochemical studies suggest two pathways for enteroendocrine cell differentiation in the colon. Am J Physiol 263:G174–G180

    CAS  PubMed  Google Scholar 

  • Säfsten B, Sjöblom M, Flemström G (2006) Serotonin increases protective duodenal bicarbonate secretion via enteric ganglia and a 5-HT4-dependent pathway. Scand J Gastroenterol 41:1279–1289

    Article  PubMed  Google Scholar 

  • Sanger GJ, Andrews PLR (2006) Treatment of nausea and vomiting: gaps in our knowledge. Autonom Neurosci 129:3–16

    Article  CAS  Google Scholar 

  • Schubert ML, Peura DA (2008) Control of gastric acid secretion in health and disease. Gastroenterology 134:1842–1860

    Article  CAS  PubMed  Google Scholar 

  • Smith TK, Gershon MD (2015) CrossTalk proposal: 5-HT is necessary for peristalsis. J Physiol Lond 593:3225–3227

    Article  CAS  PubMed  Google Scholar 

  • Spencer NJ, Sia TC, Brookes SJ, Costa M, Keating DJ (2015) CrossTalk opposing view: 5-HT is not necessary for peristalsis. J Physiol Lond 593:3229–3231

    Article  CAS  PubMed  Google Scholar 

  • Spiller R, Garsed K (2009) Postinfectious irritable bowel syndrome. Gastroenterology 136:1979–1988

    Article  PubMed  Google Scholar 

  • Tuo B-G, Isenberg JI (2003) Effect of 5-hydroxytryptamine on duodenal mucosal bicarbonate secretion in mice. Gastroenterology 125:805–814

    Article  CAS  PubMed  Google Scholar 

  • Vialli M, Erspamer V (1933) Celluli enterocromaffini e cellule basigranulose acidofile nei vertebrati. Z Zellforsch 19:743–773

    Article  Google Scholar 

  • Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Furness.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reynaud, Y., Fakhry, J., Fothergill, L. et al. The chemical coding of 5-hydroxytryptamine containing enteroendocrine cells in the mouse gastrointestinal tract. Cell Tissue Res 364, 489–497 (2016). https://doi.org/10.1007/s00441-015-2349-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2349-7

Keywords

Navigation