Skip to main content
Log in

Co-localization of Gamma-Aminobutyric Acid and Glutamate in Neurons of the Spider Central Nervous System

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Spider sensory neurons with cell bodies close to various sensory organs are innervated by putative efferent axons from the central nervous system (CNS). Light and electronmicroscopic imaging of immunolabeled neurons has demonstrated that neurotransmitters present at peripheral synapses include γ-aminobutyric acid (GABA), glutamate and octopamine. Moreover, electrophysiological studies show that these neurotransmitters modulate the sensitivity of peripheral sensory neurons. Here, we undertook immunocytochemical investigations to characterize GABA and glutamate-immunoreactive neurons in three-dimensional reconstructions of the spider CNS. We document that both neurotransmitters are abundant in morphologically distinct neurons throughout the CNS. Labeling for the vesicular transporters, VGAT for GABA and VGLUT for glutamate, showed corresponding patterns, supporting the specificity of antibody binding. Whereas some neurons displayed strong immunolabeling, others were only weakly labeled. Double labeling showed that a subpopulation of weakly labeled neurons present in all ganglia expresses both GABA and glutamate. Double labeled, strongly and weakly labeled GABA and glutamate immunoreactive axons were also observed in the periphery along muscle fibers and peripheral sensory neurons. Electron microscopic investigations showed presynaptic profiles of various diameters with mixed vesicle populations innervating muscle tissue as well as sensory neurons. Our findings provide evidence that: (1) sensory neurons and muscle fibers are innervated by morphologically distinct, centrally located GABA- and glutamate immunoreactive neurons; (2) a subpopulation of these neurons may co-release both neurotransmitters; and (3) sensory neurons and muscles are innervated by all of these neurochemically and morphologically distinct types of neurons. The biochemical diversity of presynaptic innervation may contribute to how spiders filter natural stimuli and coordinate appropriate response patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alexandrowicz JS (1951) Muscle receptor organs in the abdomen of Homarus vulgaris and Palinurus vulgaris. Q J Microsc Sci 92:163–203

    Google Scholar 

  • Alexandrowicz JS (1967) Receptor organs in thoracic and abdominal muscles of crustacea. Biol Rev 42:288–326

  • Atwood HL (1976) Organization and synaptic physiology of crustacean neuromuscular systems. Prog Neurobiol 7:291–391

    Article  CAS  PubMed  Google Scholar 

  • Babu KS, Barth FG (1984) Neuroanatomy of the central nervous system of the wandering spider, Cupiennius salei (Arachnida, Araneida). Zoomorphology 104:344–359

    Article  Google Scholar 

  • Balcita-Pedicino JJ, Omelchenko N, Bell R, Sesack SR (2011) The inhibitory influence of the lateral habenula on midbrain dopamine cells: ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus. J Comp Neurol 519:1143–1164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barreiro-Iglesias A, Villar-Cerviño V, Anadón R, Rodicio MC (2009) Dopamine and gamma-aminobutyric acid are colocalized in restricted groups of neurons in the sea lamprey brain: insights into the early evolution of neurotransmitter colocalization in vertebrates. J Anat 215:601–610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barth FG (2002) A Spider’s world, senses and behavior. Springer, Berlin

    Google Scholar 

  • Barth FG, Libera W (1970) Ein Atlas der Spaltsinnesorgane von Cupiennius salei Keys. Chelicerata (Araneae). Z Morph Ökol Tiere 68:343–369

    Article  Google Scholar 

  • Bellocchio EE, Hu H, Pohorille A, Chan J, Pickel VM, Edwards RH (1998) The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J Neurosci 18:8648–8659

    CAS  PubMed  Google Scholar 

  • Bellocchio EE, Reimer RJ, Fremeau RT Jr, Edwards RH (2000) Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289:957–960

    Article  CAS  PubMed  Google Scholar 

  • Bickford ME, Wei H, Eisenback MA, Chomsung RD, Slusarczyk AS, Dankowsi AB (2008) Synaptic organization of thalamocortical axon collaterals in the perigeniculate nucleus and dorsal lateral geniculate nucleus. J Comp Neurol 508:264–285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burrows M (1996) The neurobiology of an insect brain. Oxford University Press, Oxford

    Book  Google Scholar 

  • Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S, Longair M, Tomancak P, Hartenstein V, Douglas RJ (2012) TrakEM2 software for neural circuit reconstruction. PLoS ONE 7, e38011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chuhma N, Choi WY, Mingote S, Rayport S (2009) Dopamine neuron glutamate cotransmission: frequency-dependent modulation in the mesoventromedial projection. Neuroscience 164:1068–1083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dal Bo G, St-Gelais F, Danik M, Williams S, Cotton M, Trudeau LE (2004) Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine. J Neurochem 88:1398–1405

    Article  CAS  PubMed  Google Scholar 

  • De Camilli P, Haucke V, Takei K, Mugnaini M (2001) The structure of synapses. In: Cowan DM, Südhof TC, Stevens CF (eds) Synapses. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Elekes K, Florey E (1987) New types of synaptic connections in crayfish stretch receptor organs: an electron microscopic study. J Neurocytol 16:613–626

    Article  CAS  PubMed  Google Scholar 

  • Fabian-Fine R, Volknandt W, Seyfarth E (1999a) Peripheral synapses at identifiable mechanosensory neurons in the spider Cupiennius salei: synapsin-like immunoreactivity. Cell Tissue Res 295:13–19

    Article  CAS  PubMed  Google Scholar 

  • Fabian-Fine R, Höger U, Seyfarth EA, Meinertzhagen IA (1999b) Peripheral synapses at identified mechanosensory neurons in spiders: three-dimensional reconstruction and GABA immunocytochemistry. J Neurosci 19:298–310

    CAS  PubMed  Google Scholar 

  • Fabian-Fine R, Meinertzhagen IA, Seyfarth E-A (2000) Organization of efferent peripheral synapses at mechanosensory neurons in spiders. J Comp Neurol 420:195–210

    Article  CAS  PubMed  Google Scholar 

  • Fabian-Fine R, Seyfarth E-A, Meinertzhagen IA (2002) Peripheral synaptic contacts at mechanoreceptors in arachnids and crustaceans: morphological and immunocytochemical characteristics. Microsc Res Tech 58:283–298

    Article  PubMed  Google Scholar 

  • French AS, Li AW, Meisner S, Torkkeli PH (2014) Upstream open reading frames and Kozak regions of assembled transcriptome sequences from the spider Cupiennius salei. Selection or chance? Gene 539:203–208

    Article  CAS  PubMed  Google Scholar 

  • Gillespie DC, Kim G, Kandler K (2005) Inhibitory synapses in the developing auditory system are glutamatergic. Nat Neurosci 8:332–338

    Article  CAS  PubMed  Google Scholar 

  • Jan LY, Jan YN (1976) L-glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. J Physiol 262:215–236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuffler SW, Eyzaguirre C (1955) Synaptic inhibition in an isolated nerve cell. J Gen Physiol 39:155–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu S, Plachez C, Shao Z, Puche A, Shipley MT (2013) Olfactory bulb short axon cell release of GABA and dopamine produces a temporally biphasic inhibition–excitation response in external tufted cells. J Neurosci 33:2916–2926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mahr A, Aberle H (2006) The expression pattern of the Drosophila vesicular glutamate transporter: a marker protein for motoneurons and glutamatergic centers in the brain. Gene Expr Patterns 6:299–309

    Article  CAS  PubMed  Google Scholar 

  • Martin CA, Krantz DE (2014) Drosophila melanogaster as a genetic model system to study neurotransmitter transporters. Neurochem Int 73:71–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McIntire SL, Reimer RJ, Schuske K, Edwards RH, Jorgensen EM (1997) Identification and characterization of the vesicular GABA transporter. Nature 389:870–876

    Article  CAS  PubMed  Google Scholar 

  • Milde JJ, Seyfarth E-A (1988) Tactile hairs and leg reflexes in wandering spiders: physiological and anatomical correlates of reflex activity in the leg ganglia. J Comp Physiol A 162:623–631

    Article  Google Scholar 

  • Omote H, Miyaji T, Juge N, Moriyama Y (2011) Vesicular neurotransmitter transporter: bioenergetics and regulation of glutamate transport. Biochemistry 50:5558–5565

    Article  CAS  PubMed  Google Scholar 

  • Panek I, Torkkeli PH (2005) Inhibitory glutamate receptors in spider peripheral mechanosensory neurons. Eur J Neurosci 22:636–646

  • Panek I, French AS, Seyfarth E-A, Sekizawa S-I, Torkkeli PH (2002) Peripheral GABAergic inhibition of spider mechanosensory afferents. Eur J Neurosci 16:96–104

    Article  PubMed  Google Scholar 

  • Panek I, Meisner S, Torkkeli PH (2003) Distribution and function of GABAB receptors in spider peripheral mechanosensilla. J Neurophysiol 90:2571–2580

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Palay SL (1996) The morphology of synapses. J Neurocytol 25:687–700

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer K, Panek I, Höger U, French AS, Torkkeli PH (2009) Random stimulation of spider mechanosensory neurons reveals long-lasting excitation by GABA and muscimol. J Neurophysiol 101:54–66

    Article  CAS  PubMed  Google Scholar 

  • Seal RP, Edwards RH (2006) Functional implications of neurotransmitter co-release: glutamate and GABA share the load. Curr Opin Pharmacol 6:114–119

    Article  CAS  PubMed  Google Scholar 

  • Seyfarth EA, Hammer K, Grünert U (1990) Serotonin-like immunoreactivity in the CNS of spiders. In: Elsner N, Roth G (eds) Brain – perception, cognition, Proc 18th Göttingen Neurobiology Conference. Thieme, Stuttgart, p 321

    Google Scholar 

  • Seyfarth EA, Hammer K, Spörhase-Eichmann U, Hörner M, Vullings HG (1993) Octopamine immunoreactive neurons in the fused central nervous system of spiders. Brain Res 611:197–206

    Article  CAS  PubMed  Google Scholar 

  • Takamori S, Rhee JS, Rosenmund C, Jahn R (2000) Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407:189–194

    Article  CAS  PubMed  Google Scholar 

  • Torkkeli PH, Meisner S, Pfeiffer K, French AS (2012) GABA and glutamate receptors have different effects on excitability and are differentially regulated by calcium in spider mechanosensory neurons. Eur J Neurosci 36:3602–3614

    Article  PubMed  Google Scholar 

  • Torrealba F, Carrasco MA (2004) A review on electron microscopy and neurotransmitter systems. Brain Res Rev 47:5–17

    Article  CAS  PubMed  Google Scholar 

  • Vaaga CE, Borisovska M, Westbrook GL (2014) Dual-transmitter neurons: functional implications of co-release and co-transmission. Curr Opin Neurobiol 29C:25–32

    Article  Google Scholar 

  • Widmer A, Höger U, Meisner S, French AS, Torkkeli PH (2005) Spider peripheral mechanosensory neurons are directly innervated and modulated by octopaminergic efferents. J Neurosci 25:1588–1598

    Article  CAS  PubMed  Google Scholar 

  • Widmer A, Panek I, Höger U, Meisner S, French AS, Torkkeli PH (2006) Acetylcholine receptors in spider peripheral mechanosensilla. J Comp Physiol A 192:85–95

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Roger Croll for the anti-GAT antibody, helpful discussions, suggestions and general support. We are grateful to Dr. Hermann Aberle (University Düsseldorf) for the anti-DVGLUT antibody. We thank Dr. Andrew French for the transcriptome search of Cupiennius VGAT and VGLUT proteins. We also thank Drs. Thomas Trappenberg, Friedrich Barth, Ernst-August Seyfarth and Alan Fine for support and helpful discussions. This study was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Discovery grants RGPIN-2014-05565 to P.H.T., and A-0000065 and Accelerator Supplement 429437 (NSERC, Ottawa) to I.A.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Fabian-Fine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabian-Fine, R., Meisner, S., Torkkeli, P.H. et al. Co-localization of Gamma-Aminobutyric Acid and Glutamate in Neurons of the Spider Central Nervous System. Cell Tissue Res 362, 461–479 (2015). https://doi.org/10.1007/s00441-015-2241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2241-5

Keywords

Navigation